Generative AI Cybersecurity

Generative AI Cybersecurity


Generative AI Cybersecurity means the use of generative artificial intelligence technologies to improve the cybersecurity framework. Generative AI is the use of machine learning including deep learning in creating content and data. In cybersecurity, this capability can be used to forecast likely security threats, recognize and counter abnormalities, and program responses to threats. Generative AI is a powerful tool that optimizes an organization’s security posture by offering real-time, self-learning active protection that targets rapidly changing and complex forms of cyber threats based on the analysis of big data.

The Generative AI Cybersecurity Market is expected to grow with a significant CAGR of 21.5% during the forecast period (2024-2032). The increase in the level of cyberattacks including one performed by AI makes it crucial to have the means of proactively defending against new and previously unseen threats in real time. The shift of organizations towards introducing the zero-trust security model that incorporates the constant identification of users and devices has led to the desire for AI-based solutions that can make decisions in real-time. However, the rise in demand and funding for innovative technologies by enterprises and governments is promoting the adoption of AI and related solutions in the cybersecurity domain. For instance, on April 9, 2024, Microsoft announced an investment of USD 2.9 billion over the next two years to increase its hyperscale cloud computing and AI infrastructure in Japan. Also, it will expand its digital skilling programs to provide AI skills to more than 3 million people over the next three years, open its first Microsoft Research Asia lab in Japan, and deepen its cybersecurity collaboration with the Government of Japan.
  • Based on the deployment, the market is segmented into on-premise, cloud-based, and hybrid. The on-premise held a significant share of the market in 2023. The on-premise segment fuels the growth of generative AI cybersecurity as it provides greater control of data security and compliance with regulatory rules and standards for organizations. Some industries, such as government, healthcare, and the financial industry where specific data must be protected, are inclined to decide on on-premises AI solutions. This helps them to make specific purchases of artificial intelligence-based cybersecurity tools to fit their infrastructure. These solutions are suitable for those enterprise-level organizations, where businesses need to have customized and comprehensive control over their security.
  • Based on the technology, the market is segmented into Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Reinforcement Learning (RL), Deep Neural Networks (DNNs), Natural Language Processing (NLP), and others. Generative Adversarial Networks (GANs) held a significant share of the market in 2023. With the increasing cybersecurity threats, GANs fill an important gap by copying possible attacks and creating oppositional samples that can be used to create strong defenses. In an aspect of vulnerability testing and threat simulation, they assist companies in exposing and simulating threats that may be real in the future. Business entities enhance threat information and enhance protection. In other words, through GANs, organizations shall be in a better position to address superior cyber threats hence enhancing organizational security status.
  • Based on the application, the market is segmented into network security, endpoint security, cloud security, application security, and others. Network security held a significant share of the market in 2023. Network Security aims at shielding computer platforms from unauthorized entry and control disruption. There are specialized AI tools for network security that run continuously sense any form of anomaly, and react to it automatically, thus ensuring security for big and open networks. Moreover, companies integrate artificial intelligence-based network security to help protect enterprise networks from emerging threats. A robust market for generative AI in this segment is driven by the growing IoT environments and clouds that require protection. For instance, on May 2, 2024, Fortinet (NASDAQ: FTNT), the global cybersecurity leader driving the convergence of networking and security, announced new updates to its generative AI (GenAI) portfolio to enhance both network and security operations, including the industry’s first generative AI IoT security assistant.
  • Based on the end-user, the market is segmented into Banking, Financial Services, And Insurance (BFSI), Healthcare, Retail, IT & Telecom, Government and Defense, Energy and Utilities, and others. Banking, Financial Services, And Insurance (BFSI) is expected to grow with a significant CAGR in the forecast period (2024-2032). The BFSI segment uses generative AI cybersecurity to safeguard the data transmitted and received by such organizations, counter fraud, and meet compliance standards. Adding to this, AI solutions assist institutions in facilitating automated means of recognizing peculiar transactions, and insiders, and improving the security levels. The key corporations recently adopted generative AI cybersecurity for protection against layered cyber risks. The use of AI in BFSI is encouraged by the necessity of advanced security, conformity to governance protocols, and control against fraud activities.
  • For a better understanding of the market adoption of Generative AI Cybersecurity, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, France, U.K., Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. North America held a dominant share of the market in 2023. The higher usage of AI in security systems, rising technological advancements, and rising numbers of cybercrimes. Moreover, the major companies interested in using generative AI today are Microsoft, CrowdStrike, and Palo Alto Networks, all of which aim at using predictive AI in threat detection and AI-driven automation in responding to threats. For example, on March 28, 2023, Microsoft Corp. announced it is bringing the next generation of AI to cybersecurity with the launch of Microsoft Security Copilot, giving defenders a much-needed tool to quickly detect and respond to threats and better understand the threat landscape overall. Security Copilot will combine Microsoft’s vast threat intelligence footprint with industry-leading expertise to augment the work of security professionals through an easy-to-use AI assistant. North America occupies a large share of AI security because data and network applications expand rapidly, and more enterprises adopt cloud environments and hybrid networks.
  • Some of the major players operating in the market include Microsoft; Amazon Web Services, Inc.; SentinelOne; Fortinet, Inc.; NVIDIA Corporation; CrowdStrike; Palo Alto Networks; IBM; Darktrace Holdings Limited; Cisco Systems, Inc.


1 MARKET INTRODUCTION
1.1.Market Definitions
1.2.Main Objective
1.3.Stakeholders
1.4.Limitation
2 RESEARCH METHODOLOGY OR ASSUMPTION
2.1.Research Process of the Generative AI Cybersecurity Market
2.2.Research Methodology of the Generative AI Cybersecurity Market
2.3.Respondent Profile
3 EXECUTIVE SUMMARY
3.1.Industry Synopsis
3.2.Segmental Outlook
3.2.1.Market Growth Intensity
3.3.Regional Outlook
4 MARKET DYNAMICS
4.1.Drivers
4.2.Opportunity
4.3.Restraints
4.4.Trends
4.5.PESTEL Analysis
4.6.Demand Side Analysis
4.7.Supply Side Analysis
4.7.1.Merger & Acquisition
4.7.2.Investment Scenario
4.7.3.Industry Insights: Leading Startups and Their Unique Strategies
5 PRICING ANALYSIS
5.1.Regional Pricing Analysis
5.2.Price Influencing Factors
6 GLOBAL GENERATIVE AI CYBERSECURITY MARKET REVENUE (USD BN), 2022-2032 F
7 MARKET INSIGHTS BY DEPLOYMENT
7.1.On-Premise
7.2.Cloud-Based
7.3.Hybrid
8 MARKET INSIGHTS BY TECHNOLOGY
8.1.Generative Adversarial Networks (GANs)
8.2.Variational Autoencoders (VAEs)
8.3.Reinforcement Learning (RL)
8.4.Deep Neural Networks (DNNs)
8.5.Natural Language Processing (NLP)
8.6.Others
9 MARKET INSIGHTS BY APPLICATION
9.1.Network Security
9.2.Endpoint Security
9.3.Cloud Security
9.4.Application Security
9.5.Others
10 MARKET INSIGHTS BY END-USER
10.1.Banking, Financial Services, And Insurance (BFSI)
10.2.Healthcare
10.3.Retail
10.4.IT & Telecom
10.5.Government and Defense
10.6.Energy and Utilities
10.7.Others
11 MARKET INSIGHTS BY REGION
11.1.North America
11.1.1.U.S.
11.1.2.Canada
11.1.3.Rest of North America
11.2.Europe
11.2.1.Germany
11.2.2.France
11.2.3.UK
11.2.4.Spain
11.2.5.Italy
11.2.6.Rest of Europe
11.3.Asia-Pacific
11.3.1.China
11.3.2.Japan
11.3.3.India
11.3.4.Rest of APAC
11.4.Rest of the World
12 VALUE CHAIN ANALYSIS
12.1.List of Market Participants
13 COMPETITIVE LANDSCAPE
13.1.Competition Dashboard
13.2.Competitor Market Positioning Analysis
13.3.Porter Five Forces Analysis
14 COMPANY PROFILES
14.1.Microsoft
14.1.1.Company Overview
14.1.2.Key Financials
14.1.3.SWOT Analysis
14.1.4.Product Portfolio
14.1.5.Recent Developments
14.2.Amazon Web Services, Inc.
14.3.SentinelOne
14.4.Fortinet, Inc.
14.5.NVIDIA Corporation
14.6.CrowdStrike
14.7.Palo Alto Networks
14.8.IBM
14.9.Darktrace Holdings Limited
14.10.Cisco Systems, Inc.
15 ACRONYMS & ASSUMPTION
16 ANNEXURE

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings