Customer Analytics in E-commerce Market is expected to grow at a strong CAGR of 15% during the forecast period. Customer analytics is the gathering and interpretation of data about a company's customers. This data includes information on what customers are engaging with, how they are engaging, and for how long. By analyzing this data, a company can gain insights into what is resonating with its different customer segments. The online interaction of businesses today generates huge data volumes every second. Customers are enjoying numerous benefits as a result of numerous e-commerce businesses making life simpler and more convenient to the users in the market. All of the products provided by the retailer, such as food, appliances, furniture, and apparel, are delivered right to the buyer's door, ensuring convenience with every purchase. Moreover, a better experience is increasingly attracting customers to spend additional funds, enabling e-commerce entities to generate significant revenue growth by providing individualized experiences in the market. The key to e-commerce business success, it is crucial to learn customer preferences. The e-commerce customer analytics solution assists businesses in growing and better understanding their customers.
The COVID-19 pandemic negatively impacted the growth of the consumer analytics market. Governments implemented strict lockdowns, which led to the closure of markets. As a result, the consumer analytics industry was temporarily constrained. However, with the support of government initiatives aimed at promoting online shopping during the closure, the sector has been recovering.
By component, the market is bifurcated into solutions and services. Solutions segment led the market in 2021. In terms of solutions, customer analytics in e-commerce can be applied to various aspects of the business, such as personalized marketing, targeted promotions, customer segmentation, and retention strategies. By leveraging customer analytics, businesses can make data-driven decisions to optimize their online shopping experiences and improve the overall customer journey.
On the basis of application, the market is segmented into Machine Learning, Customer Retention, User Engagement, In-App Purchases, and Others. Machine learning segment led the market in 2021. Machine learning algorithms can analyze large amounts of data to identify patterns and trends, which can then be used to personalize marketing campaigns and improve customer experience. For example, machine learning algorithms can be used to predict which products a customer is most likely to purchase based on their past purchases and browsing history. Additionally, machine learning can be used to optimize pricing strategies, improve search engine optimization, and identify potential fraud. Overall, machine learning can greatly enhance the effectiveness of customer analytics in e-commerce by providing more accurate and actionable insights.
For a better understanding of the market adoption of the customer analytics in e-commerce industry, the market is analyzed based on its worldwide presence in the countries such as North America (U.S., Canada, Rest of North America), Europe (Germany, U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. Market in North America is expected to hold the largest share of the global customer analytics in e-commerce market. Advancements in DevOps and Big Data analytics is projected to fuel the demand for customer analytics in e-commerce. Additionally, these regional markets showcase extensive sales footprint of key players, like IBM, Oracle and Dell, and key procurers like, Amazon.com, thus propelling the adoption of customer analytics in e-commerce industry. Market in Southeast Asia Pacific region is estimated to record the fastest growth in the global customer analytics in e-commerce market.
Some of the major players operating in the market include IBM, Hitachi ID Systems, Dell, Happiest Minds, Oracle Corporation, CA Technologies, ATOS, Delinea, Microsoft Corporation, and UST Global.
1 MARKET INTRODUCTION
1.1. Market Definitions
1.2. Main Objective
1.3. Stakeholders
1.4. Limitation
2 RESEARCH METHODOLOGY OR ASSUMPTION
2.1. Research Process of the Customer Analytics in E-commerce Market
2.2. Research Methodology of the Customer Analytics in E-commerce Market
2.3. Respondent Profile
3 MARKET SYNOPSIS
4 EXECUTIVE SUMMARY
5 IMPACT OF COVID-19 ON THE CUSTOMER ANALYTICS IN E-COMMERCE MARKET
6 CUSTOMER ANALYTICS IN E-COMMERCE MARKET REVENUE (USD BN), 2020-2028F
7 MARKET INSIGHTS BY COMPONENT
7.1. Solutions
7.2. Services
8 MARKET INSIGHTS BY APPLICATION
8.1. Machine Learning
8.2. Customer Retention
8.3. User Engagement
8.4. In-App Purchases
8.5. Others
9 MARKET INSIGHTS BY REGION
9.1. North America
9.1.1. U.S.
9.1.2. Canada
9.1.3. Rest of North America
9.2. Europe
9.2.1. Germany
9.2.2. U.K.
9.2.3. France
9.2.4. Italy
9.2.5. Spain
9.2.6. Rest of Europe
9.3. Asia-Pacific
9.3.1. China
9.3.2. Japan
9.3.3. India
9.3.4. Rest of Asia-Pacific
9.4. Rest of World
10 CUSTOMER ANALYTICS IN E-COMMERCE MARKET DYNAMICS
10.1. Market Drivers
10.2. Market Challenges
11 CUSTOMER ANALYTICS IN E-COMMERCE MARKET OPPORTUNITIES