Artificial Intelligence (AI) in Radiology

Artificial Intelligence (AI) in Radiology


Artificial intelligence, often known as machine intelligence, is an area of computer science concerned with the development of intelligent devices. The application of artificial intelligence in medicine, particularly radiology, has been rapidly progressing. In radiology, it is used to detect the start of illnesses at an early stage, allowing for long-term treatment planning with the maximum level of precision. AI is employed in the medical profession for assistance with clinical decisions and data management (for both physicians and patients), and it has the potential to change radiological practice in areas such as detection and prioritising, monitoring and registration, image collection, and reporting.

In radiology, the integration of artificial intelligence is not limited to image reorganization and processing but has also aided and aided in the timely diagnosis of health conditions and enhanced detection accuracy and aids in the timely diagnosis of health conditions. For Instance, Mount Sinai Hospital researchers used Gauss Surgical's Triton to drive haemorrhage protocols, resulting in a 2-4 times increase in haemorrhage identification including both c-sections and vaginal deliveries, a 34% reduction in delayed interventions to control bleeding

The global artificial intelligence in radiology is projected to expand significantly with a CAGR of ~35.5. during the forecasting period.
  • Based on radiology type, the market is segmented into thoracic, colonoscopy, mammography and brain imaging. Amongst this, the brain imaging segment is expected to witness significant growth during the forecasting period. owing to the use of AI due to its higher efficacy and accuracy in the detection of brain tumours. Additionally, The device can also detect brain cancers on MRI images. These approaches can be highly useful in generating accurate diagnoses as well as tracking the success of tumour therapy in a reproducible and unbiased manner. furthermore, AI is employed in neurosurgery, the diagnosis of neurovascular diseases, neuro-oncology, and the detection of traumatic brain injuries. these elements are anticipated to accelerate the growth of this segment.
  • Based on techniques, the market is segmented into x-rays, magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), ultrasound, and others. Amongst these, the x-ray segment dominates the market growth during the forecasting period. The adoption of interventional x-ray systems, such as the c-arm and others, for image-guided operations, is thought to be a contributing factor in this market segment's rise. The need for x-rays has increased as a result of the development of mini-c-arms for digital radiography and flat panel detectors.
  • Based on application, the market is segmented into computer-aided-diagnostic, computer-aided-detection, quantitative analysis tool and clinical detection support. Amongst this computer-aided –diagnostics dominates the market. The computer aided-diagnostic is an established technology, optimized for specific applications, and cost-effective, and they received regulatory approval also. For instance, in Europe, the European Medical Agency (EMA) is the regulatory body. Further, (EMA) approved the Mamoscreen System a computer-aided-diagnostic device, incorporated by artificial intelligence designed for the diagnosis of mammograms for the sign of breast cancer. This system is designed to reduce the
  • For a better understanding of the market adoption of assistive devices for vulnerable groups, the market is analyzed based on its worldwide presence in the countries such as North America (U.S., Canada, and the Rest of North America), Europe (UK, Germany, France, Italy, Spain and Rest of Europe), Asia-Pacific (China, Japan, India, and Rest of Asia-Pacific), Rest of World. The Asia Pacific healthcare mobile clinic market is expected to grow with a higher CAGR rate in 2021 due to the presence of a patient pool in the region, rising disposable income supports the region’s market growth. Additionally, the government initiatives to provide robust healthcare infrastructure for patient diagnostics and treatment drives the market growth. For instance, According to invest India the hospital industry in India, accounting for 80% of the total healthcare market, is witnessing a huge investor demand from both global as well as domestic investors. These elements are anticipated to fuel market growth in the forecasting period.


1 MARKET INTRODUCTION
1.1. Market Definitions
1.2. Main Objective
1.3. Stakeholders
1.4. Limitation
2 RESEARCH METHODOLOGY OR ASSUMPTION
2.1. Research Process of the Artificial Intellegence In Radiology Market
2.2. Research Methodology of the Artificial Intellegence In Radiology Market
2.3. Respondent Profile
3 MARKET SYNOPSIS
4 EXECUTIVE SUMMARY
5 GLOBAL ARTIFICIAL INTELLEGENCE IN RADIOLOGY MARKET COVID-19 IMPACT
6 GLOBAL ARTIFICIAL INTELLEGENCE IN RADIOLOGY MARKET REVENUE, 2020-2028F
7 MARKET INSIGHTS BY RADIOLOGY TYPE
7.1. Chest Imaging
7.2. Colonoscopy
7.3. Mammography
7.4. Head imaging
8 MARKET INSIGHTS BY TECHNIQUE
8.1 X-Rays
8.2 Magnetic Resonance Imaging (MRI)
8.3 Computed Tomography (CT)
8.4 Positron Emission Tomography (PET)
8.5 Ultrasound
8.6 Others
9 MARKET INSIGHTS BY APPLICATION
9.1 Computer-aided Diagnostics
9.2 Computer-aided Detection
9.3 Quantitative Analysis Tools
9.4 Clinic Detection Support
10 MARKET INSIGHTS BY REGION
10.1 North America Market
10.1.1 U.S.
10.1.2 Canada
10.1.3 Rest of North America
10.2 Europe Market
10.2.1 UK
10.2.3 Gemany
10.2.4 France
10.2.5 Italy
10.2.6 Spain
10.2.7 Rest of Europe
10.3 Asia-Pacific Market
10.3.1. China
10.3.2. Japan
10.3.3. India
10.3.4. Rest of APAC
10.4. Rest of the World For Artificial Intellegence In Radiological Market
11 ARTIFICIAL INTELLEGENCE IN RADIOLOGICAL MARKET DYNAMICS
11.1. Market Drivers
11.2. Market Challenges
11.3. Impact Analysis
12 ARTIFICIAL INTELLIGENCE IN RADIOLOGICAL MARKET OPPORTUNITIES
13 ARTIFICIAL INTELLIGENCE IN RADIOLOGICAL MARKET TRENDS
14 DEMAND AND SUPPLY-SIDE ANALYSIS
14.1. Demand Side Analysis
14.2. Supply Side Analysis
15 VALUE CHAIN ANALYSIS
16 PRICING ANALYSIS
17 STRATEGIC INSIGHTS
18 COMPETITIVE SCENARIO
18.1. Competitive Landscape
18.1.1. Porters Fiver Forces Analysis
19 COMPANY PROFILED
19.1. AI Technologies
19.2. Enlitic, Inc.
19.3. Freenome Holdings, Inc.
19.4. Gleamer Ltd.
19.5. IBM Corporation
19.6. EnvoyAI
19.7. GE HealthCare. 
19.8. Koninklijke Philips N.V
19.9. Siemens Medical Solutions USA, Inc.
19.10. Rad AI  
20 DISCLAIMER

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings