Algorithmic trading, also known as automated or black-box trading, refers to the use of computer programs and advanced algorithms to execute trades in financial markets. These algorithms use mathematical models and statistical analysis to make trading decisions based on market data and other factors, such as economic indicators and company news. The goal of algorithmic trading is to maximize profits and losses by making trades faster and more efficiently than human traders.
The Algorithmic Trading Market was valued at 12.3 billion in 2022 and is expected to grow at a steady rate of around 10.3% in the forecasted period (2023-2030) owing to the increasing availability of data, and advances in supercomputing and cloud computing technology. Also, emerging technology like machine learning and artificial intelligence are driving the growth of the market as AI and ML algorithms analyze vast amounts of market data and make predictions about future market trends, which is used to make more profitable trades. They also automate trading decisions, detect potential risks, and prevent fraud. These technologies have the potential to improve the efficiency and speed of trading decisions, making them a popular tool among traders.
Based on type, the market is segmented into stock markets, forex, ETF, bonds, cryptocurrencies, and others. Among these, the stock market segment is currently the leading segment of the market. This is because the stock market is one of the most liquid and widely traded markets in the world, with a large number of traders and investors participating in it. For instance, a report by the Futures Industry Association (FIA) found that the use of automated trading has increased significantly in the futures industry. In 2020, the FIA reported that 94% of futures commission merchants (FCMs) use automated trading, up from 85% in 2015. Additionally, the stock market offers a wide range of assets to trade, including stocks, bonds, and options, which provides traders with many opportunities to make profitable trades.
Based on deployment type, the market is bifurcated into on-premises, and cloud. Among these, the cloud segment is currently the leading segment of the algorithmic trading market owing to the increasing adoption of cloud technology worldwide. For instance, in 2020, the report by the Federal Reserve System estimates that 90% of financial institutions used cloud technology, up from 70% in 2015. Also, cloud-based deployment offers several benefits to traders, including scalability, flexibility, and cost-effectiveness. Cloud-based algorithms can be easily scaled up or down based on market conditions, and traders can access them from anywhere in the world. Additionally, cloud-based algorithms are often less expensive than on-premises algorithms, as they do not require traders to purchase and maintain their own hardware and infrastructure.
Based on end-users, the market is categorized into institutional investors, long-term traders, short-term traders, and retail investors. Among these, institutional investors, such as pension funds, mutual funds, and hedge funds, are currently the leading segment of the algorithmic trading market. This is because institutional investors have the resources and expertise to implement complex algorithmic trading strategies, and they able to generate significant returns by doing so. Additionally, institutional investors often have large trading volumes and can negotiate better prices with market makers, which can further enhance their returns.
For a better understanding of the market adoption of Recruitment Softwares, the market is analyzed based on its worldwide presence in countries such as North America (U.S., Canada, and the Rest of North America), Europe (Germany, U.K., France, Spain, Italy, Rest of Europe), Asia-Pacific (China, Japan, India, Rest of Asia-Pacific), Rest of World. North America is anticipated to have a significant share of the market. This is because technological advancements in North America have empowered financial institutions with faster and more efficient trading strategies, leading to increased adoption of algorithms. Additionally, the region's well-developed financial infrastructure, including advanced exchanges and regulatory frameworks, has facilitated algorithmic trading. Moreover, the availability of large pools of liquidity and the concentration of major financial players in North America created an ideal environment for algorithmic trading strategies. Furthermore, the increasing demand for minimizing trading costs and optimizing investment returns has driven the expansion of this market, as algorithmic trading in North America offers a competitive edge in achieving these objectives.
Some of the major players operating in the market include 63 moons technologies limited; ALGOTRADERS; Argo Software Engineering; InfoReach, Inc.; Kuberre Systems, Inc.; MetaQuotes Ltd; REFINITIV; Symphony; Tata Consultancy Services Limited; VIRTU Finance Inc.
1 MARKET INTRODUCTION
1.1. Market Definitions
1.2. Main Objective
1.3. Stakeholders
1.4. Limitation
2 RESEARCH METHODOLOGY OR ASSUMPTIONS
2.1. Research Process of the Algorithmic Trading Market
2.2. Research Methodology of the Algorithmic Trading Market
2.3. Respondent Profile
3 MARKET SYNOPSIS
4 EXECUTIVE SUMMARY
5 IMPACT OF COVID-19 ON THE ALGORITHMIC TRADING MARKET