Machine Learning Market

Machine Learning Market – Global Industry Size, Share, Trends, Opportunity, and Forecast. 2018-2028
Segmented By Component (Services & Solutions), By Enterprises Size (SMEs and Large Enterprises), By Deployment (Cloud and On-premises), By End-User (Healthcare, Retailer, IT & Telecom, Automotive and Transports, Advertising & Media, BFSI, Government and Defense and Others), By Region

The Global Machine Learning Market is anticipated to grow at a robust pace in the forecast period 2022-2028. Technological innovation is the key strength behind the growth of the global machine-learning market. Artificial intelligence (AI) in machine learning (ML) enables computer programmers to forecast outcomes more accurately without being expressly trained. AI and machine learning are the newest boundaries for development and IT enterprises. Machine learning is an area of research focused on analyzing and developing "learning" processes and methods that use data to enhance efficiency on a given set of tasks.

Rising adoption of cloud-based services & ability to perform effectual output

Massive amounts of data can be reviewed by machine learning, which can identify trends and patterns that people would overlook. For instance, an e-commerce site like Amazon, knowing its customers' browsing patterns and past purchases, enables it to offer them the appropriate goods, discounts, and reminders. Furthermore, machine learning is used in part by ServiceNow, a cloud computing platform. The organization, which provides workflow software, employs machine learning to assist its clients in automating as many tedious procedures as possible and ensuring that staff members are working efficiently.

The ability to perform operations without involving human involvement, improvements in data center capabilities, and high computing power contribute to the technology's rise to prominence. Additionally, the market is expanding as a result of the quick adoption of cloud-based technologies in numerous sectors, such as Virtual services like software as a service (SaaS), platforms as a service (PaaS), and infrastructure as a service.

Machine Learning allows the identification of failures and their mitigation, directly affecting the standard and advancement of the process. Making errors enables process improvement. In addition to the ability for mistake and failure prevention, ML has stock prediction algorithms. Models built from data can forecast when an error may happen, enabling preventative measures to stop it from happening. This will likely cause the market to grow throughout the projected period.

Latest Trend of Self-Driving Vehicles and Multiple Handle Datasets

Companies are using this open-source artificial intelligence library to develop their machine-learning capabilities. For Instance, TensorFlow is library organizations use to build Java projects, data flow graphs, and various applications. APIs for Java are also present. For instance, Accenture Consultancy and professional services firms are using machine learning-based technologies with a market cap of USD 229 billion. Due to this market is expected to grow in the forecast period.

Many modern mobile devices can recognize autonomously when a user performs a certain activity, like cycling or running. Nowadays, novice machine learning engineers utilize a dataset that comprises fitness activity records for a few people that were acquired using mobile devices equipped with inertial sensors to practice with this sort of project. Furthermore, students are using categorization models that can precisely forecast future actions. Due to this, the adoption of machine learning in the datasets market is likely to increase in the forecast period.

ML is also being introduced in the automotive sector. For instance, Tesla, an American multinational company, announced the launch of self-driving. Although they have generated controversy, self-driving cars constitute one of the most remarkable advancements introduced in machine learning. This market is expected to grow with a high CAGR in the forecast period.

The machine-learning market has also expanded due to the integration of machine learning-in robots. For instance, Robot installations reached a new height in the United States in 2018, according to the statistics yearbook "World Robotics." Supporting they are using Line Follower Robot Using PID Algorithm due to which the Global machine learning market is expanding in the future.

Lack of skilled employees

However, the main difficulty most organizations have when integrating machine learning into their business processes is a lack of qualified workers with analytical talent, and there is an even greater need for those who can keep an eye on analytical material.

Market Segmentation

The Global Machine Learning Market is segmented into component, enterprise size, deployment, end-user, regional distribution, and competitive landscape. Based on components, the market is segmented into Services & Solutions. Based on enterprises size, the market is divided into SMEs and large enterprises. Based on deployment, the market is divided into cloud and on-premises. Based on end-user, the market is divided into healthcare, retailer, it & telecom, automotive and transports, advertising & media, BFSI, government and defense, and others.

Market player

The main market players in the Global Machine Learning Market are Amazon Web Services, Inc., Baidu, Inc, Domino Data Lab, Inc, Microsoft Corporation, Google, Inc, Alpine Data, IBM Corporation, SAP SE, Intel Corporation, and SAS Institute Inc.

Recent Developments
  • The use of DNN models for the early diagnosis and identification of diabetes and cardiac risk is now being worked on by NITI Aayog in India. The FDA is also developing a legal framework for utilizing AI and machine intelligence in the healthcare sector.
  • Nvidia provides high-end video game graphics best, but the company's gamble on AI and machine learning has begun to pay off in recent years.
  • The London-based firm Wayve raised USD200 million in January 2022. As a result, enterprises will be better equipped to train and build artificial intelligence capable of handling challenging driving situations.
  • Accenture is a leading worldwide consulting organization and technology authority that frequently assists businesses in using technology to alter their operations. Machine learning is one of Accenture's various specialties.
Report Scope:

In this report, Global Machine Learning Market has been segmented into the following categories, in addition to the industry trends, which have also been detailed below:
  • Machine Learning Market, By Component:
  • Services
  • Solutions
  • Machine Learning Market, By Enterprises Size:
  • SMEs
  • Large enterprises
  • Machine Learning Market, By Deployment:
  • Cloud
  • On-premises
  • Machine Learning Market, By End-user:
  • Healthcare
  • Retailer
  • IT & telecom
  • Automotive and Transports
  • Advertising & Media
  • BFSI
  • Government and Defense
  • Others
  • Machine Learning Market, By Region:
  • North America
  • United States
  • Mexico
  • Canada
  • Asia-Pacific
  • India
  • Japan
  • South Korea
  • Australia
  • Singapore
  • Malaysia
  • China
  • Europe
  • Germany
  • United Kingdom
  • France
  • Italy
  • Spain
  • Poland
  • Denmark
  • South America
  • Brazil
  • Argentina
  • Colombia
  • Peru
  • Chile
  • Middle East
  • South Arabia
  • South Africa
  • UAE
  • Iraq
  • Turkey
Competitive Landscape

Company Profiles: Detailed analysis of the major companies present in the Global Machine Learning Market.

Global Machine Learning Market report

Company Information
  • Detailed analysis and profiling of additional market players (up to five).


1. Service Overview
1.1. Market Definition
1.2. Scope of the Market
1.3. Markets Covered
1.4. Years Considered for Study
1.5. Key Market Segmentations
2. Research Methodology
2.1. Baseline Methodology
2.2. Key Industry Partners
2.3. Major Association and Secondary Sources
2.4. Forecasting Methodology
2.5. Data Triangulation & Validation
2.6. Assumptions and Limitations
3. Executive Summary
4. Voice of Customers
5. Global Machine Learning Market
5.1. Market Size & Forecast
5.1.1. By Value
5.2. Market Share & Forecast
5.2.1. By Component (Service and Solutions)
5.2.2. By Enterprise Size (SMEs and Large enterprises)
5.2.3. By Deployment (Cloud and On-premises)
5.2.4. By End-User (Healthcare, Retail, IT & Telecom, Automotive & Transports, Advertising & Media, BFSI, Government & Defense and Others)
5.2.5. By Region
5.3. By Company (2022)
5.4. Market Map
6. North America Machine Learning Market Outlook
6.1. Market Size & Forecast
6.1.1. By Value
6.2. Market Share & Forecast
6.2.1. By Component
6.2.2. By Enterprise Size
6.2.3. By Deployment
6.2.4. By End-Use
6.2.5. By Country
6.3. North America: Country Analysis
6.3.1. United States Machine Learning Market Outlook
6.3.1.1. Market Size & Forecast
6.3.1.1.1. By Value
6.3.1.2. Market Share & Forecast
6.3.1.2.1. By Component
6.3.1.2.2. By Enterprise Size
6.3.1.2.3. By Deployment
6.3.1.2.4. By End-Use
6.3.2. Canada Machine Learning Market Outlook
6.3.2.1. Market Size & Forecast
6.3.2.1.1. By Value
6.3.2.2. Market Share & Forecast
6.3.2.2.1. By Component
6.3.2.2.2. By Enterprise Size
6.3.2.2.3. By Deployment
6.3.2.2.4. By End-Use
6.3.3. Mexico Machine Learning Market Outlook
6.3.3.1. Market Size & Forecast
6.3.3.1.1. By Value
6.3.3.2. Market Share & Forecast
6.3.3.2.1. By Component
6.3.3.2.2. By Enterprise Size
6.3.3.2.3. By Deployment
6.3.3.2.4. By End-Use
7. Asia-Pacific Machine Learning Market Outlook
7.1. Market Size & Forecast
7.1.1. By Value
7.2. Market Share & Forecast
7.2.1. By Component
7.2.2. By Enterprise Size
7.2.3. By Deployment
7.2.4. By End-Use
7.2.5. By Country
7.3. Asia-Pacific: Country Analysis
7.3.1. China Machine Learning Market Outlook
7.3.1.1. Market Size & Forecast
7.3.1.1.1. By Value
7.3.1.2. Market Share & Forecast
7.3.1.2.1. By Component
7.3.1.2.2. By Enterprise Size
7.3.1.2.3. By Deployment
7.3.1.2.4. By End-Use
7.3.2. India Machine Learning Market Outlook
7.3.2.1. Market Size & Forecast
7.3.2.1.1. By Value
7.3.2.2. Market Share & Forecast
7.3.2.2.1. By Component
7.3.2.2.2. By Enterprise Size
7.3.2.2.3. By Deployment
7.3.2.2.4. By End-Use
7.3.3. Japan Machine Learning Market Outlook
7.3.3.1. Market Size & Forecast
7.3.3.1.1. By Value
7.3.3.2. Market Share & Forecast
7.3.3.2.1. By Component
7.3.3.2.2. By Enterprise Size
7.3.3.2.3. By Deployment
7.3.3.2.4. By End-Use
7.3.4. South Korea Machine Learning Market Outlook
7.3.4.1. Market Size & Forecast
7.3.4.1.1. By Value
7.3.4.2. Market Share & Forecast
7.3.4.2.1. By Component
7.3.4.2.2. By Enterprise Size
7.3.4.2.3. By Deployment
7.3.4.2.4. By End-Use
7.3.5. Australia Machine Learning Market Outlook
7.3.5.1. Market Size & Forecast
7.3.5.1.1. By Value
7.3.5.2. Market Share & Forecast
7.3.5.2.1. By Component
7.3.5.2.2. By Enterprise Size
7.3.5.2.3. By Deployment
7.3.5.2.4. By End-Use
7.3.6. Singapore Machine Learning Market Outlook
7.3.6.1. Market Size & Forecast
7.3.6.1.1. By Value
7.3.6.2. Market Share & Forecast
7.3.6.2.1. By Component
7.3.6.2.2. By Enterprise Size
7.3.6.2.3. By Deployment
7.3.6.2.4. By End-Use
7.3.7. Malaysia Machine Learning Market Outlook
7.3.7.1. Market Size & Forecast
7.3.7.1.1. By Value
7.3.7.2. Market Share & Forecast
7.3.7.2.1. By Component
7.3.7.2.2. By Enterprise Size
7.3.7.2.3. By Deployment
7.3.7.2.4. By End-Use
8. Europe Machine Learning Market Outlook
8.1. Market Size & Forecast
8.1.1. By Value
8.2. Market Share & Forecast
8.2.1. By Component
8.2.2. By Enterprise Size
8.2.3. By Deployment
8.2.4. By End-Use
8.2.5. By Country
8.3. Europe: Country Analysis
8.3.1. Germany Machine Learning Market Outlook
8.3.1.1. Market Size & Forecast
8.3.1.1.1. By Value
8.3.1.2. Market Share & Forecast
8.3.1.2.1. By Component
8.3.1.2.2. By Enterprise Size
8.3.1.2.3. By Deployment
8.3.1.2.4. By End-Use
8.3.2. United Kingdom Machine Learning Market Outlook
8.3.2.1. Market Size & Forecast
8.3.2.1.1. By Value
8.3.2.2. Market Share & Forecast
8.3.2.2.1. By Component
8.3.2.2.2. By Enterprise Size
8.3.2.2.3. By Deployment
8.3.2.2.4. By End-Use
8.3.3. France Machine Learning Market Outlook
8.3.3.1. Market Size & Forecast
8.3.3.1.1. By Value
8.3.3.2. Market Share & Forecast
8.3.3.2.1. By Component
8.3.3.2.2. By Enterprise Size
8.3.3.2.3. By Deployment
8.3.3.2.4. By End-Use
8.3.4. Russia Machine Learning Market Outlook
8.3.4.1. Market Size & Forecast
8.3.4.1.1. By Value
8.3.4.2. Market Share & Forecast
8.3.4.2.1. By Component
8.3.4.2.2. By Enterprise Size
8.3.4.2.3. By Deployment
8.3.4.2.4. By End-Use
8.3.5. Spain Machine Learning Market Outlook
8.3.5.1. Market Size & Forecast
8.3.5.1.1. By Value
8.3.5.2. Market Share & Forecast
8.3.5.2.1. By Component
8.3.5.2.2. By Enterprise Size
8.3.5.2.3. By Deployment
8.3.5.2.4. By End-Use
8.3.6. Poland Machine Learning Market Outlook
8.3.6.1. Market Size & Forecast
8.3.6.1.1. By Value
8.3.6.2. Market Share & Forecast
8.3.6.2.1. By Component
8.3.6.2.2. By Enterprise Size
8.3.6.2.3. By Deployment
8.3.6.2.4. By End-Use
8.3.7. Italy Machine Learning Market Outlook
8.3.7.1. Market Size & Forecast
8.3.7.1.1. By Value
8.3.7.2. Market Share & Forecast
8.3.7.2.1. By Component
8.3.7.2.2. By Enterprise Size
8.3.7.2.3. By Deployment
8.3.7.2.4. By End-Use
8.3.8. Denmark Machine Learning Market Outlook
8.3.8.1. Market Size & Forecast
8.3.8.1.1. By Value
8.3.8.2. Market Share & Forecast
8.3.8.2.1. By Component
8.3.8.2.2. By Enterprise Size
8.3.8.2.3. By Deployment
8.3.8.2.4. By End-Use
9. South America Machine Learning Market Outlook
9.1. Market Size & Forecast
9.1.1. By Value
9.2. Market Share & Forecast
9.2.1. By Component
9.2.2. By Enterprise Size
9.2.3. By Deployment
9.2.4. By End-Use
9.2.5. By Country
9.3. South America: Country Analysis
9.3.1. Brazil Machine Learning Market Outlook
9.3.1.1. Market Size & Forecast
9.3.1.1.1. By Value
9.3.1.2. Market Share & Forecast
9.3.1.2.1. By Component
9.3.1.2.2. By Enterprise Size
9.3.1.2.3. By Deployment
9.3.1.2.4. By End-Use
9.3.2. Argentina Machine Learning Market Outlook
9.3.2.1. Market Size & Forecast
9.3.2.1.1. By Value
9.3.2.2. Market Share & Forecast
9.3.2.2.1. By Component
9.3.2.2.2. By Enterprise Size
9.3.2.2.3. By Deployment
9.3.2.2.4. By End-Use
9.3.3. Colombia Machine Learning Market Outlook
9.3.3.1. Market Size & Forecast
9.3.3.1.1. By Value
9.3.3.2. Market Share & Forecast
9.3.3.2.1. By Component
9.3.3.2.2. By Enterprise Size
9.3.3.2.3. By Deployment
9.3.3.2.4. By End-Use
9.3.4. Peru Machine Learning Market Outlook
9.3.4.1. Market Size & Forecast
9.3.4.1.1. By Value
9.3.4.2. Market Share & Forecast
9.3.4.2.1. By Component
9.3.4.2.2. By Enterprise Size
9.3.4.2.3. By Deployment
9.3.4.2.4. By End-Use
9.3.5. Chile Machine Learning Market Outlook
9.3.5.1. Market Size & Forecast
9.3.5.1.1. By Value
9.3.5.2. Market Share & Forecast
9.3.5.2.1. By Component
9.3.5.2.2. By Enterprise Size
9.3.5.2.3. By Deployment
9.3.5.2.4. By End-Use
10. Middle East & Africa Machine Learning Market Outlook
10.1. Market Size & Forecast
10.1.1. By Value
10.2. Market Share & Forecast
10.2.1. By Component
10.2.2. By Enterprise Size
10.2.3. By Deployment
10.2.4. By End-Use
10.2.5. By Country
10.3. Middle East & Africa: Country Analysis
10.3.1. Saudi Arabia Machine Learning Market Outlook
10.3.1.1. Market Size & Forecast
10.3.1.1.1. By Value
10.3.1.2. Market Share & Forecast
10.3.1.2.1. By Component
10.3.1.2.2. By Enterprise Size
10.3.1.2.3. By Deployment
10.3.1.2.4. By End-Use
10.3.2. South Africa Machine Learning Market Outlook
10.3.2.1. Market Size & Forecast
10.3.2.1.1. By Value
10.3.2.2. Market Share & Forecast
10.3.2.2.1. By Component
10.3.2.2.2. By Enterprise Size
10.3.2.2.3. By Deployment
10.3.2.2.4. By End-Use
10.3.3. UAE Machine Learning Market Outlook
10.3.3.1. Market Size & Forecast
10.3.3.1.1. By Value
10.3.3.2. Market Share & Forecast
10.3.3.2.1. By Component
10.3.3.2.2. By Enterprise Size
10.3.3.2.3. By Deployment
10.3.3.2.4. By End-Use
10.3.4. Turkey Machine Learning Market Outlook
10.3.4.1. Market Size & Forecast
10.3.4.1.1. By Value
10.3.4.2. Market Share & Forecast
10.3.4.2.1. By Component
10.3.4.2.2. By Enterprise Size
10.3.4.2.3. By Deployment
10.3.4.2.4. By End-Use
11. Market Dynamics
11.1. Drivers
11.2. Challenges
12. Market Trends & Developments
13. Company Profiles
13.1. Amazon Web Services, Inc.
13.1.1. Business Overview
13.1.2. Key Revenue and Financials (If Available)
13.1.3. Recent Developments
13.1.4. Key Personnel
13.1.5. Key Product/Services
13.2. Baidu, Inc.
13.2.1. Business Overview
13.2.2. Key Revenue and Financials (If Available)
13.2.3. Recent Developments
13.2.4. Key Personnel
13.2.5. Key Product/Services
13.3. Domino Data Lab, Inc.
13.3.1. Business Overview
13.3.2. Key Revenue and Financials (If Available)
13.3.3. Recent Developments
13.3.4. Key Personnel
13.3.5. Key Product/Services
13.4. Microsoft Corporation
13.4.1. Business Overview
13.4.2. Key Revenue and Financials (If Available)
13.4.3. Recent Developments
13.4.4. Key Personnel
13.4.5. Key Product/Services
13.5. Google, Inc.
13.5.1. Business Overview
13.5.2. Key Revenue and Financials (If Available)
13.5.3. Recent Developments
13.5.4. Key Personnel
13.5.5. Key Product/Services
13.6. Alpine Data
13.6.1. Business Overview
13.6.2. Key Revenue and Financials (If Available)
13.6.3. Recent Developments
13.6.4. Key Personnel
13.6.5. Key Product/Services
13.7. IBM Corporation
13.7.1. Business Overview
13.7.2. Key Revenue and Financials (If Available)
13.7.3. Recent Developments
13.7.4. Key Personnel
13.7.5. Key Product/Services
13.8. SAP SE
13.8.1. Business Overview
13.8.2. Key Revenue and Financials (If Available)
13.8.3. Recent Developments
13.8.4. Key Personnel
13.8.5. Key Product/Services
13.9. Intel Corporation
13.9.1. Business Overview
13.9.2. Key Revenue and Financials (If Available)
13.9.3. Recent Developments
13.9.4. Key Personnel
13.9.5. Key Product/Services
13.10. SAS Institute Inc.
13.10.1. Business Overview
13.10.2. Key Revenue and Financials (If Available)
13.10.3. Recent Developments
13.10.4. Key Personnel
13.10.5. Key Product/Services
14. Strategic Recommendations
15. About Us & Disclaimer

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings