Edge AI Hardware Market Forecasts to 2030 – Global Analysis By Processor Type (CPUs (Central Processing Units), GPUs (Graphics Processing Units), DSPs (Digital Signal Processors), NPUs (Neural Processing Units), ASICs (Application-Specific Integrated Circ

Edge AI Hardware Market Forecasts to 2030 – Global Analysis By Processor Type (CPUs (Central Processing Units), GPUs (Graphics Processing Units), DSPs (Digital Signal Processors), NPUs (Neural Processing Units), ASICs (Application-Specific Integrated Circuits), FPGAs (Field-Programmable Gate Arrays) and Other Processor Types), Device Type, Deployment, Application and By Geography


According to Stratistics MRC, the Global Edge AI Hardware Market is accounted for $25.61 billion in 2024 and is expected to reach $55.82 billion by 2030 growing at a CAGR of 18.7% during the forecast period. Edge AI hardware refers to specialized computing devices designed to perform artificial intelligence (AI) tasks locally, at or near the data source (the edge) rather than relying on centralized cloud servers. Edge AI hardware enables real-time processing of data from sensors and other sources without requiring constant internet connectivity, making it ideal for applications where speed, privacy, or bandwidth constraints are critical.

According to an article by CNN Business, the South Korean government will invest USD 6.94 billion in artificial intelligence by 2027 as part of efforts to retain a leading global position in cutting-edge semiconductor chips.

Market Dynamics:

Driver:

Increasing demand for real-time analytics

Edge AI hardware enables devices to perform complex computations locally, reducing latency and enabling quicker responses to data insights. Industries such as autonomous vehicles, manufacturing, and healthcare require instantaneous analytics for operational efficiency and safety. By deploying Edge AI hardware, organizations can achieve faster insights, improved operational agility, and enhanced responsiveness, thereby meeting the growing demand for real-time analytics in critical applications.

Restraint:

Scalability issues

Scalability issues in Edge AI hardware arise from complexities in deploying and managing distributed systems across diverse environments. Challenges include integrating heterogeneous devices, ensuring seamless interoperability, and managing updates and maintenance remotely. Furthermore, scaling edge AI solutions to accommodate growing data volumes and evolving application requirements requires robust infrastructure and skilled expertise. These factors increase deployment costs and complexity, limiting scalability and hindering widespread adoption.

Opportunity:

Proliferation of IoT devices

Edge AI hardware is essential for processing this data locally; reducing latency and bandwidth requirements while enhancing real-time decision-making capabilities. This capability is crucial in applications such as smart cities, industrial automation, and healthcare, where rapid data analysis is necessary for operational efficiency and responsiveness. As IoT deployments continue to expand, the demand for efficient, decentralized processing solutions provided by edge AI hardware is expected to rise significantly.

Threat:

Complexity in integration

Complexity in integrating Edge AI hardware arises due to diverse hardware platforms, software frameworks, and compatibility issues with existing IT infrastructures. This complexity hampers market growth by increasing deployment costs, requiring specialized technical expertise, and potentially extending time-to-market for solutions. Lack of standardized protocols and interoperability standards further complicates integration efforts, limiting scalability and interoperability across different edge computing environments.

Covid-19 Impact

The covid-19 pandemic accelerated the adoption of edge AI hardware by highlighting the need for decentralized data processing in remote work setups, healthcare monitoring, and contactless operations. Organizations sought solutions that could ensure real-time data analysis and minimize dependence on centralized infrastructure. This shift drove increased demand for edge AI hardware, particularly in sectors prioritizing safety, efficiency, and continuity during global disruptions.

The servers segment is expected to be the largest during the forecast period

The servers segment is estimated to have a lucrative growth. Edge servers in Edge AI hardware refer to specialized computing devices positioned at the periphery of networks, closer to data sources. They facilitate local processing of AI algorithms, reducing latency and bandwidth consumption by handling data closer to its origin. Edge servers are crucial for applications requiring real-time analytics, such as IoT deployments and autonomous systems, enabling faster decision-making and enhancing overall system efficiency and responsiveness.

The smart cities segment is expected to have the highest CAGR during the forecast period

The smart cities segment is anticipated to witness the highest CAGR growth during the forecast period. Edge AI hardware plays a crucial role in smart cities by enabling real-time data processing and decision-making at the edge of the network. These devices facilitate efficient management of urban infrastructure. By processing data locally, Edge AI hardware reduces latency, improves resource allocation, enhances public safety, and optimizes service delivery, thereby supporting the development and sustainability of smart city initiatives.

Region with largest share:

Asia Pacific is projected to hold the largest market share during the forecast period driven by the proliferation of IoT devices, advancements in 5G infrastructure, and increasing adoption of AI-driven applications across industries such as manufacturing, healthcare, and automotive. Countries like China, Japan, and South Korea are leading in technological innovation and deployment of edge AI solutions. The region's dynamic industrial landscape and government initiatives promoting digital transformation further bolster market expansion.

Region with highest CAGR:

North America is projected to have the highest CAGR over the forecast period driven by the region's technological advancements, particularly in IoT, autonomous systems, and smart manufacturing. Key factors propelling market expansion include increasing investments in smart city initiatives, rising demand for autonomous vehicles, and the proliferation of connected devices in industrial automation and healthcare sectors. North America remains a pivotal region for driving advancements and adoption of Edge AI hardware technologies.

Key players in the market

Some of the key players profiled in the Edge AI Hardware Market include NVIDIA, Intel, Qualcomm, Google, Synopsys, CEVA Inc., Xilinx, Huawei, Samsung Electronics, NXP Semiconductors, Texas Instruments, Apple and Micron Technology.

Key Developments:

In July 2024, Google launched distributed cloud edge hardware to run AI workloads in or outside its data centers. The Google Distributed Cloud (GDC) air-gapped appliance is mostly for highly regulated organizations that must keep data in-house. The hardware runs the Google Cloud infrastructure stack, data security services and Vertex AI platform. Vertex AI runs models that have been pretrained for various tasks.

In September 2022, NVIDIA introduced the NVIDIA IGX platform for high-precision edge AI, bringing advanced security and proactive safety to sensitive industries such as manufacturing, logistics and healthcare. NVIDIA IGX will help companies build the next generation of software-defined industrial and medical devices that can safely operate in the same environment as humans.

Processor Types Covered:
• CPUs (Central Processing Units)
• GPUs (Graphics Processing Units)
• DSPs (Digital Signal Processors)
• NPUs (Neural Processing Units)
• ASICs (Application-Specific Integrated Circuits)
• FPGAs (Field-Programmable Gate Arrays)
• Other Processor Types

Device Types Covered:
• Servers
• Gateways
• Computing Devices
• Cameras
• Robots
• Drones
• Other Device Types

Deployments Covered:
• On-Premises
• Cloud-Edge
• Fog Computing

Applications Covered:
• Autonomous Vehicles
• Healthcare
• Surveillance & Security
• Consumer Electronics
• Retail
• Smart Cities
• Other Applications

Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa

What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2022, 2023, 2024, 2026, and 2030
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements


1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Application Analysis
3.7 Emerging Markets
3.8 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global Edge AI Hardware Market, By Processor Type
5.1 Introduction
5.2 CPUs (Central Processing Units)
5.3 GPUs (Graphics Processing Units)
5.4 DSPs (Digital Signal Processors)
5.5 NPUs (Neural Processing Units)
5.6 ASICs (Application-Specific Integrated Circuits)
5.7 FPGAs (Field-Programmable Gate Arrays)
5.8 Other Processor Types
6 Global Edge AI Hardware Market, By Device Type
6.1 Introduction
6.2 Servers
6.3 Gateways
6.4 Computing Devices
6.5 Cameras
6.6 Robots
6.7 Drones
6.8 Other Device Types
7 Global Edge AI Hardware Market, By Deployment
7.1 Introduction
7.2 On-Premises
7.3 Cloud-Edge
7.4 Fog Computing
8 Global Edge AI Hardware Market, By Application
8.1 Introduction
8.2 Autonomous Vehicles
8.3 Healthcare
8.4 Surveillance & Security
8.5 Consumer Electronics
8.6 Retail
8.7 Smart Cities
8.8 Other Applications
9 Global Edge AI Hardware Market, By Geography
9.1 Introduction
9.2 North America
9.2.1 US
9.2.2 Canada
9.2.3 Mexico
9.3 Europe
9.3.1 Germany
9.3.2 UK
9.3.3 Italy
9.3.4 France
9.3.5 Spain
9.3.6 Rest of Europe
9.4 Asia Pacific
9.4.1 Japan
9.4.2 China
9.4.3 India
9.4.4 Australia
9.4.5 New Zealand
9.4.6 South Korea
9.4.7 Rest of Asia Pacific
9.5 South America
9.5.1 Argentina
9.5.2 Brazil
9.5.3 Chile
9.5.4 Rest of South America
9.6 Middle East & Africa
9.6.1 Saudi Arabia
9.6.2 UAE
9.6.3 Qatar
9.6.4 South Africa
9.6.5 Rest of Middle East & Africa
10 Key Developments
10.1 Agreements, Partnerships, Collaborations and Joint Ventures
10.2 Acquisitions & Mergers
10.3 New Product Launch
10.4 Expansions
10.5 Other Key Strategies
11 Company Profiling
11.1 NVIDIA
11.2 Intel
11.3 Qualcomm
11.4 Google
11.5 Synopsys
11.6 CEVA Inc.
11.7 Xilinx
11.8 Huawei
11.9 Samsung Electronics
11.10 NXP Semiconductors
11.11 Texas Instruments
11.12 Apple
11.13 Micron Technology
List of Tables
Table 1 Global Edge AI Hardware Market Outlook, By Region (2022-2030) ($MN)
Table 2 Global Edge AI Hardware Market Outlook, By Processor Type (2022-2030) ($MN)
Table 3 Global Edge AI Hardware Market Outlook, By CPUs (Central Processing Units) (2022-2030) ($MN)
Table 4 Global Edge AI Hardware Market Outlook, By GPUs (Graphics Processing Units) (2022-2030) ($MN)
Table 5 Global Edge AI Hardware Market Outlook, By DSPs (Digital Signal Processors) (2022-2030) ($MN)
Table 6 Global Edge AI Hardware Market Outlook, By NPUs (Neural Processing Units) (2022-2030) ($MN)
Table 7 Global Edge AI Hardware Market Outlook, By ASICs (Application-Specific Integrated Circuits) (2022-2030) ($MN)
Table 8 Global Edge AI Hardware Market Outlook, By FPGAs (Field-Programmable Gate Arrays) (2022-2030) ($MN)
Table 9 Global Edge AI Hardware Market Outlook, By Other Processor Types (2022-2030) ($MN)
Table 10 Global Edge AI Hardware Market Outlook, By Device Type (2022-2030) ($MN)
Table 11 Global Edge AI Hardware Market Outlook, By Servers (2022-2030) ($MN)
Table 12 Global Edge AI Hardware Market Outlook, By Gateways (2022-2030) ($MN)
Table 13 Global Edge AI Hardware Market Outlook, By Computing Devices (2022-2030) ($MN)
Table 14 Global Edge AI Hardware Market Outlook, By Cameras (2022-2030) ($MN)
Table 15 Global Edge AI Hardware Market Outlook, By Robots (2022-2030) ($MN)
Table 16 Global Edge AI Hardware Market Outlook, By Drones (2022-2030) ($MN)
Table 17 Global Edge AI Hardware Market Outlook, By Other Device Types (2022-2030) ($MN)
Table 18 Global Edge AI Hardware Market Outlook, By Deployment (2022-2030) ($MN)
Table 19 Global Edge AI Hardware Market Outlook, By On-Premises (2022-2030) ($MN)
Table 20 Global Edge AI Hardware Market Outlook, By Cloud-Edge (2022-2030) ($MN)
Table 21 Global Edge AI Hardware Market Outlook, By Fog Computing (2022-2030) ($MN)
Table 22 Global Edge AI Hardware Market Outlook, By Application (2022-2030) ($MN)
Table 23 Global Edge AI Hardware Market Outlook, By Autonomous Vehicles (2022-2030) ($MN)
Table 24 Global Edge AI Hardware Market Outlook, By Healthcare (2022-2030) ($MN)
Table 25 Global Edge AI Hardware Market Outlook, By Surveillance & Security (2022-2030) ($MN)
Table 26 Global Edge AI Hardware Market Outlook, By Consumer Electronics (2022-2030) ($MN)
Table 27 Global Edge AI Hardware Market Outlook, By Retail (2022-2030) ($MN)
Table 28 Global Edge AI Hardware Market Outlook, By Smart Cities (2022-2030) ($MN)
Table 29 Global Edge AI Hardware Market Outlook, By Other Applications (2022-2030) ($MN)
Note: Tables for North America, Europe, APAC, South America, and Middle East & Africa Regions are also represented in the same manner as above.

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings