DataOps Platform Market Forecasts to 2028 – Global Analysis By Offering (Platform and Services), By Type (Lean Manufacturing, Devops, Agile Development and Other Types), By Deployment Mode, By Application, By End User and By Geography

DataOps Platform Market Forecasts to 2028 – Global Analysis By Offering (Platform and Services), By Type (Lean Manufacturing, Devops, Agile Development and Other Types), By Deployment Mode, By Application, By End User and By Geography


According to Stratistics MRC, the Global DataOps Platform Market is accounted for $1.21 billion in 2022 and is expected to reach $4.09 billion by 2028 growing at a CAGR of 22.5% during the forecast period. The objective of the DataOps platform is to increase the quality, speed, and business value of data-related activities by combining agile approaches, automation, and collaboration across data professionals. This comprehensive approach to data management goes beyond technology. The goal of the DataOps platform is to improve communication, integration, and automation of data flow between data sources and consumers. This is a radical departure from traditional DevOps.

Market Dynamics

Driver

Increased data complexity and accelerating data volumes

Organizations are having to manage ever-increasing amounts of data from many sources, in both structured and unstructured formats, as well as real-time data streams. The quantity, velocity, and diversity of data frequently make it challenging for traditional data management techniques to keep up, which causes inefficiencies, mistakes, and delays in data processing and analysis. Organizations may integrate, process, and analyze data effectively with the help of DataOps platforms, which provide the required tools and technology to handle this complexity. Platforms for data operations can enable both batch processing and real-time data streaming.

Restraint

Data privacy and security concerns

Sensitive data must be protected, and organizations must abide by data privacy laws as awareness of this fact grows. Data that is sensitive and private is handled by DataOps platforms. The maintenance of robust security measures while ensuring data privacy and compliance with laws (such as GDPR or CCPA) can be a difficult task. The concerns raised in this instance must be addressed, and strong security mechanisms are required to exist. As a result of the integration of numerous tools and systems used by DataOps platforms, there may be more attack surfaces and possible weaknesses. If the DataOps platform is not properly secured, organizations can be concerned about the possibility of data breaches and their potential impact on data privacy.

Opportunity

Need to bridge gap between data engineers and data analysts

Additionally, DataOps arose as an approach to bridging the gap between data engineers and data analysts, who have various priorities and goals. Data engineering, data science, business analysis, and IT operations teams, as well as these teams' cross-functional alignment, are all supported by data operations platforms. DataOps systems make it possible for teams to collaborate, exchange knowledge, and adhere to uniform procedures, which boosts output and productivity by giving every individual access to the same tools and processes. Furthermore, DataOps platforms promote collaboration and cross-functional alignment, which reduces barriers between teams, promotes knowledge sharing, and improves the overall efficacy and efficiency of data operations. Organizations can take advantage of the team's aggregate knowledge in this collaborative environment to spur innovation and provide high-quality data-driven insights.

Threat

Need to mitigate the challenges of skilled talent shortage

The lack of highly skilled workers is one of the major issues facing the market for data operations platforms. Data engineering, data science, software development, and operations experts are needed for DataOps platforms. A talent gap has developed because of the industry's significant lack of experts with these particular talents. As a result, businesses are having trouble finding qualified individuals to create, launch, and maintain DataOps platforms. The speed at which technology is developing makes this talent deficit increasingly severe. For existing team members to adjust to the DataOps strategy, further training or retraining may be required. Additionally, primarily data scientists and machine learning engineers are affected by the scarcity of qualified talent.

Covid-19 Impact

The COVID-19 outbreak has increased the dependence of firms on remote labor and digital technologies, necessitating higher demands for digital transformation. DataOps tools are becoming increasingly necessary to help firms manage their data more efficiently. One of COVID-19's most significant consequences on the market for DataOps platforms is an increase in demand for cloud-based solutions. As remote work becomes the new norm, businesses are looking for solutions to access their data from anywhere. Cloud-based DataOps solutions, which let teams collaborate and work remotely on data pipelines, provide this flexibility.

The platform segment is expected to be the largest during the forecast period

Platform segment commanded the largest market share throughout the domination period. DataOps platforms are made to simplify data management and analysis procedures, enabling businesses to increase operational effectiveness over time. The market for DataOps platforms offers significant, lucrative potential due to the growing volume of data that enterprises must manage, process, and analyze. These elements are augmenting the segments growth.

The cloud segment is expected to have the highest CAGR during the forecast period

Cloud segment is projected to have profitable growth during the estimation period. Depending on the particular needs of a business, the cloud segment of the deployment method plays a vital role in setting up the necessary IT infrastructure for managing the IT ecosystem in the market for DataOps platforms. However, the popularity of cloud deployment mode in the market for DataOps platforms is driven by the opportunity to have more control over data location and accessibility across a network.

Region with largest share

North America region is estimated to have the largest share over the forecasted period because of its thriving IT sector and continuous commitment to innovation and digital transformation. It has also become a leader in implementing DataOps systems. Major nations like the United States and Canada are included in the region, with the United States driving the adoption of DataOps due to the presence of multiple internationally recognized technology enterprises. The region's unwavering focus on innovation and digital transformation is the primary factor behind the widespread use of DataOps platforms in North America.

Region with highest CAGR

Because big data is rapidly growing, cloud computing is widely used, artificial intelligence is advancing, and DataOps platforms are being used rapidly, the Asia-Pacific region is expected to have lucrative growth over the extrapolated period. Businesses are looking for automated solutions to manage their data effectively as a result of the unprecedented growth in data volumes in an effort to reduce costs, enhance operational efficiency, and improve data quality. Moreover, in the Asia-Pacific area, the DataOps platform business environment is broad and continuously changing. It includes a wide range of technology manufacturers, service providers, and consulting companies that offer complete end-to-end data management solutions to enterprises of all kinds.

Key players in the market

Some of the key players in DataOps Platform market include Accenture , Atlan, AWS, Databricks, Dataiku, Datakitchen, Fosfor, Hitachi Vantara, IBM, Informatica, Microsoft, Oracle, SAS Institute, Teradata and Wipro.

Key Developments

In April 2023, DataOps.live partnered with AWS and joined the AWS Partner Network on the Software Path and obtained the AWS Qualified Software Certification after successfully completing the AWS Foundational Technical Review.

In March 2023, Blechwarenfabrik Limburg GmbH collaborated with Hitachi Vantara and adopted its Lumada DataOps Platform which includes Pentaho, to achieve real-time, standardized, integrated data analysis for increased sustainability and accelerated production.

In February 2023, Informatica announced the launch of Cloud Data Integration-Free and PayGo, which is the only free cloud data loading, integration, and ETL/ELT service. This new service targets data practitioners and non-technical users such as in marketing, sales, and revenue operations teams to build data pipelines within minutes.

In November 2022, Wipro had announced the launch of Data Intelligence Suite speeding up the cloud modernization and data monetization, focused on modernizing data estates, including data stores, pipelines, and visualizations, running on Amazon Web Services. It also provides a dependable and safe way to migrate from existing platforms and fragmented legacy systems to the cloud.

In June 2022, Teradata announced the general availability and integration of the Teradata Vantage multi-cloud data and analytics platform with Amazon SageMaker. It enables organizations to widely employ advanced analytics to fully leverage their data.

Offerings Covered
• Platform
• Services

Types Covered
• Lean Manufacturing
• Devops
• Agile Development
• Other Types

Deployment Modes Covered
• On Premises
• Cloud

Applications Covered
• Banking, Financial Services and Insurance (BFSI)
• Healthcare & Life Sciences
• Retail & E Commerce
• Manufacturing
• Other Applications

End Users Covered
• Government & Defense
• Telecommunications
• Transportation & Logistics
• IT/ITES
• Media & Entertainment
• Other End Users

Regions Covered
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa

What our report offers
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
- Market Trends (Drivers, Constraints, Opportunities,Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements


1 Executive Summary
2 Preface
2.1 Abstract
2.2 Stake Holders
2.3 Research Scope
2.4 Research Methodology
2.4.1 Data Mining
2.4.2 Data Analysis
2.4.3 Data Validation
2.4.4 Research Approach
2.5 Research Sources
2.5.1 Primary Research Sources
2.5.2 Secondary Research Sources
2.5.3 Assumptions
3 Market Trend Analysis
3.1 Introduction
3.2 Drivers
3.3 Restraints
3.4 Opportunities
3.5 Threats
3.6 Application Analysis
3.7 End User Analysis
3.8 Emerging Markets
3.9 Impact of Covid-19
4 Porters Five Force Analysis
4.1 Bargaining power of suppliers
4.2 Bargaining power of buyers
4.3 Threat of substitutes
4.4 Threat of new entrants
4.5 Competitive rivalry
5 Global DataOps Platform Market, By Offering
5.1 Introduction
5.2 Platform
5.2.1 Master Data Management
5.2.2 Data Governance
5.2.3 Data Quality
5.2.4 Data Integration
5.2.5 Data Visualization
5.2.6 Collaboration
5.2.7 Automation
5.2.8 Data Analytics
5.2.9 Other Platforms
5.3 Services
5.3.1 Professional Services
5.3.1.1 Deployment & Integration
5.3.1.2 Consulting Services
5.3.1.3 Training, Support & Maintenance
5.3.2 Managed Services
6 Global DataOps Platform Market, By Type
6.1 Introduction
6.2 Lean Manufacturing
6.3 Devops
6.4 Agile Development
6.5 Other Types
7 Global DataOps Platform Market, By Deployment Mode
7.1 Introduction
7.2 On Premises
7.3 Cloud
7.3.1 Hybrid Cloud
7.3.2 Private Cloud
7.3.3 Public Cloud
8 Global DataOps Platform Market, By Application
8.1 Introduction
8.2 Banking, Financial Services and Insurance (BFSI)
8.2.1 Financial Data Optimization
8.2.2 Investment Analysis
8.2.3 Credit Scoring
8.2.4 Fradulent Transactions Identification
8.2.5 Other Banking, Financial Services and Insurance (BFSI) Applications
8.3 Healthcare & Life Sciences
8.3.1 Drug Discovery
8.3.2 Precision Medicine
8.3.3 Electronic Health Record
8.3.4 Clinical Trial Management
8.3.5 Other Healthcare & Life Sciences
8.4 Retail & E Commerce
8.4.1 Demand Forecasting
8.4.2 Inventory Management
8.4.3 Personalized Product Recommendation
8.4.4 Pricing Optimization
8.4.5 Other Retail & E Commerce Applications
8.5 Manufacturing
8.5.1 Product Planning and Scheduling
8.5.2 Product Quality Control
8.5.3 Supply Chain Optimization
8.5.4 Predictive Maintenance
8.5.5 Other Manufacturing Applications
8.6 Other Applications
9 Global DataOps Platform Market, By End User
9.1 Introduction
9.2 Government & Defense
9.2.1 Geospatial Analysis
9.2.2 Emergency Response
9.2.3 Intelligent Gathering and Analysis
9.2.4 Public Safety
9.3 Telecommunications
9.3.1 Network Capacity Planning
9.3.2 Real Time Analytics
9.3.3 Network Performance
9.3.4 Network Security
9.4 Transportation & Logistics
9.4.1 Fleet Management
9.4.2 Real Time Tracking
9.4.3 Route Optimization
9.5 IT/ITES
9.5.1 Incident Management
9.5.2 Application Performance Management
9.5.3 IT Infrastructure Management
9.5.4 Software Development
9.6 Media & Entertainment
9.6.1 Audience Segmentation
9.6.2 Content Optimization
9.6.3 AD Targeting
9.7 Other End Users
10 Global DataOps Platform Market, By Geography
10.1 Introduction
10.2 North America
10.2.1 US
10.2.2 Canada
10.2.3 Mexico
10.3 Europe
10.3.1 Germany
10.3.2 UK
10.3.3 Italy
10.3.4 France
10.3.5 Spain
10.3.6 Rest of Europe
10.4 Asia Pacific
10.4.1 Japan
10.4.2 China
10.4.3 India
10.4.4 Australia
10.4.5 New Zealand
10.4.6 South Korea
10.4.7 Rest of Asia Pacific
10.5 South America
10.5.1 Argentina
10.5.2 Brazil
10.5.3 Chile
10.5.4 Rest of South America
10.6 Middle East & Africa
10.6.1 Saudi Arabia
10.6.2 UAE
10.6.3 Qatar
10.6.4 South Africa
10.6.5 Rest of Middle East & Africa
11 Key Developments
11.1 Agreements, Partnerships, Collaborations and Joint Ventures
11.2 Acquisitions & Mergers
11.3 New Product Launch
11.4 Expansions
11.5 Other Key Strategies
12 Company Profiling
12.1 Accenture
12.2 Atlan
12.3 AWS
12.4 Databricks
12.5 Dataiku
12.6 Datakitchen
12.7 Fosfor
12.8 Hitachi Vantara
12.9 IBM
12.10 Informatica
12.11 Microsoft
12.12 Oracle
12.13 SAS Institute
12.14 Teradata
12.15 Wipro
List of Tables
Table 1 Global DataOps Platform Market Outlook, By Region (2020-2028) ($MN)
Table 2 Global DataOps Platform Market Outlook, By Offering (2020-2028) ($MN)
Table 3 Global DataOps Platform Market Outlook, By Platform (2020-2028) ($MN)
Table 4 Global DataOps Platform Market Outlook, By Master Data Management (2020-2028) ($MN)
Table 5 Global DataOps Platform Market Outlook, By Data Governance (2020-2028) ($MN)
Table 6 Global DataOps Platform Market Outlook, By Data Quality (2020-2028) ($MN)
Table 7 Global DataOps Platform Market Outlook, By Data Integration (2020-2028) ($MN)
Table 8 Global DataOps Platform Market Outlook, By Data Visualization (2020-2028) ($MN)
Table 9 Global DataOps Platform Market Outlook, By Collaboration (2020-2028) ($MN)
Table 10 Global DataOps Platform Market Outlook, By Automation (2020-2028) ($MN)
Table 11 Global DataOps Platform Market Outlook, By Data Analytics (2020-2028) ($MN)
Table 12 Global DataOps Platform Market Outlook, By Other Platforms (2020-2028) ($MN)
Table 13 Global DataOps Platform Market Outlook, By Services (2020-2028) ($MN)
Table 14 Global DataOps Platform Market Outlook, By Professional Services (2020-2028) ($MN)
Table 15 Global DataOps Platform Market Outlook, By Managed Services (2020-2028) ($MN)
Table 16 Global DataOps Platform Market Outlook, By Type (2020-2028) ($MN)
Table 17 Global DataOps Platform Market Outlook, By Lean Manufacturing (2020-2028) ($MN)
Table 18 Global DataOps Platform Market Outlook, By Devops (2020-2028) ($MN)
Table 19 Global DataOps Platform Market Outlook, By Agile Development (2020-2028) ($MN)
Table 20 Global DataOps Platform Market Outlook, By Other Types (2020-2028) ($MN)
Table 21 Global DataOps Platform Market Outlook, By Deployment Mode (2020-2028) ($MN)
Table 22 Global DataOps Platform Market Outlook, By On Premises (2020-2028) ($MN)
Table 23 Global DataOps Platform Market Outlook, By Cloud (2020-2028) ($MN)
Table 24 Global DataOps Platform Market Outlook, By Hybrid Cloud (2020-2028) ($MN)
Table 25 Global DataOps Platform Market Outlook, By Private Cloud (2020-2028) ($MN)
Table 26 Global DataOps Platform Market Outlook, By Public Cloud (2020-2028) ($MN)
Table 27 Global DataOps Platform Market Outlook, By Application (2020-2028) ($MN)
Table 28 Global DataOps Platform Market Outlook, By Banking, Financial Services and Insurance (BFSI) (2020-2028) ($MN)
Table 29 Global DataOps Platform Market Outlook, By Financial Data Optimization (2020-2028) ($MN)
Table 30 Global DataOps Platform Market Outlook, By Investment Analysis (2020-2028) ($MN)
Table 31 Global DataOps Platform Market Outlook, By Credit Scoring (2020-2028) ($MN)
Table 32 Global DataOps Platform Market Outlook, By Fradulent Transactions Identification (2020-2028) ($MN)
Table 33 Global DataOps Platform Market Outlook, By Other Banking, Financial Services and Insurance (BFSI) Applications (2020-2028) ($MN)
Table 34 Global DataOps Platform Market Outlook, By Healthcare & Life Sciences (2020-2028) ($MN)
Table 35 Global DataOps Platform Market Outlook, By Drug Discovery (2020-2028) ($MN)
Table 36 Global DataOps Platform Market Outlook, By Precision Medicine (2020-2028) ($MN)
Table 37 Global DataOps Platform Market Outlook, By Electronic Health Record (2020-2028) ($MN)
Table 38 Global DataOps Platform Market Outlook, By Clinical Trial Management (2020-2028) ($MN)
Table 39 Global DataOps Platform Market Outlook, By Other Healthcare & Life Sciences (2020-2028) ($MN)
Table 40 Global DataOps Platform Market Outlook, By Retail & E Commerce (2020-2028) ($MN)
Table 41 Global DataOps Platform Market Outlook, By Demand Forecasting (2020-2028) ($MN)
Table 42 Global DataOps Platform Market Outlook, By Inventory Management (2020-2028) ($MN)
Table 43 Global DataOps Platform Market Outlook, By Personalized Product Recommendation (2020-2028) ($MN)
Table 44 Global DataOps Platform Market Outlook, By Pricing Optimization (2020-2028) ($MN)
Table 45 Global DataOps Platform Market Outlook, By Other Retail & E Commerce Applications (2020-2028) ($MN)
Table 46 Global DataOps Platform Market Outlook, By Manufacturing (2020-2028) ($MN)
Table 47 Global DataOps Platform Market Outlook, By Product Planning and Scheduling (2020-2028) ($MN)
Table 48 Global DataOps Platform Market Outlook, By Product Quality Control (2020-2028) ($MN)
Table 49 Global DataOps Platform Market Outlook, By Supply Chain Optimization (2020-2028) ($MN)
Table 50 Global DataOps Platform Market Outlook, By Predictive Maintenance (2020-2028) ($MN)
Table 51 Global DataOps Platform Market Outlook, By Other Manufacturing Applications (2020-2028) ($MN)
Table 52 Global DataOps Platform Market Outlook, By Other Applications (2020-2028) ($MN)
Table 53 Global DataOps Platform Market Outlook, By End User (2020-2028) ($MN)
Table 54 Global DataOps Platform Market Outlook, By Government & Defense (2020-2028) ($MN)
Table 55 Global DataOps Platform Market Outlook, By Geospatial Analysis (2020-2028) ($MN)
Table 56 Global DataOps Platform Market Outlook, By Emergency Response (2020-2028) ($MN)
Table 57 Global DataOps Platform Market Outlook, By Intelligent Gathering and Analysis (2020-2028) ($MN)
Table 58 Global DataOps Platform Market Outlook, By Public Safety (2020-2028) ($MN)
Table 59 Global DataOps Platform Market Outlook, By Telecommunications (2020-2028) ($MN)
Table 60 Global DataOps Platform Market Outlook, By Network Capacity Planning (2020-2028) ($MN)
Table 61 Global DataOps Platform Market Outlook, By Real Time Analytics (2020-2028) ($MN)
Table 62 Global DataOps Platform Market Outlook, By Network Performance (2020-2028) ($MN)
Table 63 Global DataOps Platform Market Outlook, By Network Security (2020-2028) ($MN)
Table 64 Global DataOps Platform Market Outlook, By Transportation & Logistics (2020-2028) ($MN)
Table 65 Global DataOps Platform Market Outlook, By Fleet Management (2020-2028) ($MN)
Table 66 Global DataOps Platform Market Outlook, By Real Time Tracking (2020-2028) ($MN)
Table 67 Global DataOps Platform Market Outlook, By Route Optimization (2020-2028) ($MN)
Table 68 Global DataOps Platform Market Outlook, By IT/ITES (2020-2028) ($MN)
Table 69 Global DataOps Platform Market Outlook, By Incident Management (2020-2028) ($MN)
Table 70 Global DataOps Platform Market Outlook, By Application Performance Management (2020-2028) ($MN)
Table 71 Global DataOps Platform Market Outlook, By IT Infrastructure Management (2020-2028) ($MN)
Table 72 Global DataOps Platform Market Outlook, By Software Development (2020-2028) ($MN)
Table 73 Global DataOps Platform Market Outlook, By Media & Entertainment (2020-2028) ($MN)
Table 74 Global DataOps Platform Market Outlook, By Audience Segmentation (2020-2028) ($MN)
Table 75 Global DataOps Platform Market Outlook, By Content Optimization (2020-2028) ($MN)
Table 76 Global DataOps Platform Market Outlook, By AD Targeting (2020-2028) ($MN)
Table 77 Global DataOps Platform Market Outlook, By Other End Users (2020-2028) ($MN)
Note: Tables for North America, Europe, Asia Pacific, South America and Middle East & Africa Regions are also represented in the same manner as above.

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings