Autonomous Data Platform Market Forecasts to 2028 – Global Analysis By Component (Services and Platform), Deployment (Cloud and On-premises), Enterprise (Small and Medium Enterprise (SME) and Large Enterprise), End User and Geography
According to Stratistics MRC, the Global Autonomous Data Platform Market is accounted for $969.63 million in 2022 and is expected to reach $3663.51 million by 2028 growing at a CAGR of 24.8% during the forecast period. The autonomous data tool examines a specific customer's big data infrastructure in order to address critical business issues and assure optimal database utilisation. It is a data and analytics platform that manages and optimises itself by leveraging multiple cognitive computing platforms such as AI and Machine Learning (ML). It provides insights, actionable alerts, and recommendations to users by combining heuristics with machine learning, resulting in high performance, workload continuity, and cost savings. It improves operating efficiency and simplifies the procedure.
According to the most contemporary Shopping Index of Salesforce, digital commerce grew at a rate of 13% year-over-year in Q4 2018, and projected retail e-commerce sales exceeding USD 4 trillion through 2020.
Market Dynamics:
Driver:
New-age enterprises are witnessing higher adoption of private and hybrid cloud
Because of the developing trends of cloud application in new-age businesses organisations, and storage of enterprise data primarily in hybrid and public clouds, the applications of autonomous data platforms are continually increasing in cloud-based businesses. Furthermore, autonomous data platforms offer numerous means for examining, sharing, and integrating essential data more securely and quickly than traditional enterprise data warehouse systems.
Restraint:
High cost of autonomous data platforms
Companies' expectations are rising as a result of technological advancements. As a result, these businesses frequently update their cloud-based and customer-centric solutions to meet the requirements of gathering, analyzing, and sorting their customers' data. Furthermore, firms must make significant investments to adopt cloud-based and autonomous data platforms, which may limit demand for these platforms during the forecasted period.
Opportunity:
Growing awareness about the benefits of autonomous data platforms
The autonomous data platforms can encrypt data, track workloads, and monitor any entity that attempts to access the data. As a result, these platforms let businesses to use data without having to worry about regulatory or reputational damage from an improper environment. Furthermore, these systems provide exceptional flexibility, allowing businesses to grow or decrease capacity based on convenience and requirements.
Threat:
Lack of skilled professionals
Complex and costly integration, as well as restricted support and customization are some limitations and difficulties that can impede market expansion. Market limitations may be caused by things like a shortage of highly qualified workers and challenging analytical procedures. However, difficult analytical methods, a lack of competent and trained personnel, and issues connected with striking a balance between quality and safety are impeding market expansion.
Covid-19 Impact
The breakout of the COVID-19 pandemic has had an impact on the market for an autonomous data platform, and the sector's growth is projected to be driven post-pandemic. This is due to the increasing transmission rate of COVID-19 over the world, as well as the companies' use of work-from-home models to protect their employees from the deadly virus. As a result, many businesses have made significant investments in autonomous data platform solutions to streamline and boost productivity throughout their business activities. Furthermore, the rise in network dependency and network load during the pandemic time will boost the expansion of the autonomous data platform industry.
The cloud segment is expected to be the largest during the forecast period
The cloud segment is estimated to have a lucrative growth, due to the flexibility and cost-effectiveness of cloud-based solutions, users are more likely to prefer and adopt them. Cloud computing platforms provide for greater scalability, lower implementation costs, and continuous development. Implementing cloud-based solutions simplifies service delivery due to its virtual environment, which allows organisations to access information across interconnected devices at any time. Users can upload data to linked devices across a network rather than saving it locally on devices. These advantages provided by cloud adoption will boost segment growth.
The small and medium size enterprises segment is expected to have the highest CAGR during the forecast period
The small and medium size enterprises segment is anticipated to witness the fastest CAGR growth during the forecast period, due to the increase in investments in advanced techniques such as machine learning, expanding application of AI technology, and rising usage of digital payment systems. Because of increased volume, small and medium-sized organisations are expected to expand their demand for self-contained data structures. The autonomous data platform market will grow as machine learning and AI are used more frequently to improve decision-making.
Region with highest share:
North America is projected to hold the largest market share during the forecast period, because the region is home to the most developed economies, such as Canada and the United States, it is regarded as the most advanced region in terms of embracing cutting-edge technologies and cloud-based solutions. The increasing use of mobile phones and the internet in North America is driving significant industry growth. Furthermore, the increased use of smart phones and digital networking sites to engage with business partners and clients is helping the region's market expansion.
Region with highest CAGR:
Asia Pacific is projected to have the highest CAGR over the forecast period, owing to the increasing use of AI and machine learning to assist decision-making. Furthermore, the capacity of organisations to merge client data from multiple sources onto an uniform platform, decreasing hours of computing effort, is facilitating the demand for autonomous data platforms. Because of increasing expenditures in R&D activities to improve the capabilities of these platforms, the autonomous data platform business is anticipated to see new growth prospects. As a result, over the forecast period, the Asia Pacific area is likely to have strong momentum for autonomous database platforms.
Key players in the market
Some of the key players profiled in the Autonomous Data Platform Market include Oracle Corporation, Hewlett Packard Enterprise Development LP, Amazon Web Services, Inc., Teradata, IBM, Denodo Technologies, Alteryx, Inc., Gemini Data, Cloudera, Inc., Qubole, Inc., Paxata, Inc., Zaloni Inc., Ataccama Corporation, MapR Technologies, Inc. and Intellias Ltd.
Key Developments:
In September 2021, Alteryx formed a partnership with UiPath, a software company for robotic process automation. Through this partnership, the two companies jointly developed a new connector that allows Alteryx users to call out to UiPath bots and integrate UiPath's RPA capabilities into their workflows.
In January, 2021, Alteryx partnered with Snowflake, the Data Cloud company. Under this partnership, the analytics automation and data science capabilities of Alteryx would be integrated into Snowflake's platform. This integration would offer customers automated data pipelining, rapid data processing, and speed analytics outcomes at scale.
In December 2020, AWS came into a partnership with BlackBerry QNX, a subsidiary of BlackBerry. Through this partnership, the two companies would jointly create BlackBerry IVY, an Intelligent Vehicle Data Platform. Moreover, BlackBerry IVY can be defined as a scalable, cloud-connected software platform that enables automobile manufacturers to offer a constant and safe way to read vehicle sensor data, centralize it, and develop actionable insights from that data both locally in the vehicle and in the cloud.
In October 2020, IBM joined hands with AT&T, an American multinational conglomerate holding company. Through this collaboration, the two companies introduced Hybrid Cloud in order to help the companies better manage open hybrid cloud computing in a low-latency, private cellular network edge environment.
In Feb 2020, Oracle announced the availability of the Oracle Cloud Data Science Platform. At the core is Oracle Cloud Infrastructure Data Science, helping enterprises to collaboratively build, train, manage and deploy machine learning models to increase the success of data science projects, helping improve the effectiveness of data science teams with capabilities like shared projects, model catalogs, team security policies, reproducibility and auditability.
In June 2019, Qubole introduced a self-service platform for data scientists and engineers to construct AI, machine learning, and analytics processes on their preferred public cloud.
In April 2019, MapR announced new MapR Data Platform innovations including new, deep integrations with Kubernetes key components for primary workloads on Spark and Drill. The platform was able to better manage extremely elastic workloads as a result of this innovation.
Components Covered:
• Services
• Platform
Deployments Covered:
• Cloud
• On-premises
Enterprises Covered:
• Small and Medium Enterprise (SME)
• Large Enterprise
End Users Covered:
• Banking, Financial Services and Insurance (BFSI)
• Healthcare and Life Sciences
• Media and Telecommunication
• Retail and Consumer Goods
• Other End Users
Regions Covered:
• North America
US
Canada
Mexico
• Europe
Germany
UK
Italy
France
Spain
Rest of Europe
• Asia Pacific
Japan
China
India
Australia
New Zealand
South Korea
Rest of Asia Pacific
• South America
Argentina
Brazil
Chile
Rest of South America
• Middle East & Africa
Saudi Arabia
UAE
Qatar
South Africa
Rest of Middle East & Africa
What our report offers:
- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook