Artificial Intelligence in Telecommunication Market Forecasts to 2028 – Global Analysis By Component (Solution and Service), Deployment Mode (Cloud and On-Premise), Technology, Application and By Geography
According to Stratistics MRC, the Global Artificial Intelligence in Telecommunication Market is accounted for $1.6 billion in 2022 and is expected to reach $13.5 billion by 2028 growing at a CAGR of 41.4% during the forecast period. In order to analyse massive data, such as data consumption, call history, and application use, artificial intelligence in telecom employs software and algorithms to estimate human perception. This helps to enhance the customer experience. Additionally, AI aids telecommunications companies in the detection of network faults, network security, network optimisation, and provision of virtual support.
According to Cisco Systems Inc, the volume of big data is poised to increase from 51 exabytes in 2016 to 403 exabytes in the last year, representing a growth rate of almost seven times.
Market Dynamics:Driver:AI technologies are being more widely used in telecom applications
As telecom corporations prioritised network maintenance, artificial intelligence in the telecommunications industry is gaining pace and acceptance. The company's lack of integrity and disrespect for its customers are exposed by a network outage. Additionally, the firm suffers financial losses as a result of network failure. Therefore, AI is being used to address this problem, as telecom businesses can quickly identify the issue using AI, there is a growing need for artificial intelligence in the telecommunications industry.
Restraint:AI technology and telecommunications networks are incompatible
During the forecast period, issues with compatibility, the unreliability of artificial intelligence algorithms, a lack of skilled labour, and challenges with the protection of sensitive data are the main obstacles to the growth of AI in the telecommunications market. Due to potential complications with the integration of artificial intelligence in telecommunication solutions, compatibility issues are what essentially limit the growth of the worldwide artificial intelligence in telecommunication market.
Opportunity:The advent of 5G technology in smartphones
The transition from fourth generation (4G) to fifth generation (5G) mobile communications is now taking place in the telecom sector. With extremely low latency rates, 5G technology is predicted to offer faster data transfer speeds. Additionally, telecom firms are constructing the infrastructure necessary to service every industry controlled by the Internet of Things (IoT). By fusing the analytics, AI/machine learning, and networking capabilities of Google Cloud with the 5G network capabilities of AT&T Intellectual Property, both firms are building 5G solutions.
Threat:Insufficient or low-quality data
AI systems work by being trained on a collection of data that is pertinent to the problem at hand. However, businesses frequently struggle to feed their AI algorithms with the correct kind or quantity of data because they lack access to it or it isn't currently available. When using AI system, this imbalance may produce inconsistent or even discriminating outcomes may avoid this problem, sometimes referred to as the bias problem, by making sure use representative and high-quality data. ongoing AI training programme for staff, and presumably modernise IT infrastructure so that it can manage the demands of r machine learning tools if want to do it correctly. Even while some of these expenses can't be avoided, absolutely cut them down by looking into free or low-cost training programmes. Before investing money to buy them, there are a number of solutions that might assist determine which AI capabilities r training programme will benefit from.
Covid-19 Impact
Due to the dramatically increased digital penetration during the time of COVID-19-induced lockdowns and strict social distancing policies, which further fueled the demand for remote operational tools like artificial intelligence tools, the global AI in telecommunication market analysis has experienced stable growth during the COVID-19 pandemic. More than any other occurrence in human history, the Coronavirus/COVID-19 pandemic has further underscored the crucial role that telecommunications infrastructure plays in keeping organisations, governments, and communities linked and operating.
The data analytics segment is expected to be the largest during the forecast period
The data analytics segment is estimated to have a lucrative growth. Data analytics is increasingly carried out with the use of specialised hardware and software. In order to help businesses, make better business decisions, data analytics technologies and methodologies are widely employed in the commercial sector. Analytics tools are also used by scientists and researchers to support or refute scientific models, ideas, and hypotheses. Businesses may employ data analytics to inform decision-making and reduce financial losses. Data analytics may help organisations increase operational effectiveness. An organisation may use data analytics to better evaluate hazards and implement preventative actions which propels the growth of the market.
The virtual assistance segment is expected to have the highest CAGR during the forecast period
The virtual assistance segment is anticipated to witness the highest CAGR growth during the forecast period, due to the enormous savings that customer service automation provides telecom firms; the virtual help category is anticipated to have the quickest growth throughout the projected period. In the communication sector, customer care chatbots may also be properly educated since machine learning algorithms can automate queries and direct consumers to the best representative. Operators may gather and examine consumer data from the viewpoint of a subscriber thanks to artificial intelligence.
Region with highest share:
North America is projected to hold the highest market share during the forecast period owing to the expansion of the region by the increasing number of telecom businesses that use automation and AI for network optimisation and customer care. For instance, AT&T Intellectual Property introduced mobile 5G with edge AI computing in the United States in 2018. The AI network security solutions from CUJO LLC are being used by telecom service providers in the US to safeguard their networks.
Region with highest CAGR:Asia Pacific is projected to have the highest CAGR over the forecast period, owing to the quickening pace of technical development in developing nations like China and India is blamed for this expansion. For instance, China Telecom Corporation Ltd., a supplier of internet access and mobile telecommunications services, collaborates with Huawei Technologies Co., Ltd., a global provider of telecoms equipment and consumer electronics. This partnership is expected to investigate wireless network cell anomaly detection and radio cell capacity prediction based on the Network AI Engine (NAIE).
Key players in the market
Some of the key players profiled in the Artificial Intelligence In Telecommunication Market include Intel Corporation, ZTE Corporation, IBM Corporation, Google LLC, Microsoft, Salesforce, Inc, Cisco Systems, Inc, AT&T, Infosys Limited, Evolv Technology Solutions, Inc., NVIDIA Corporation, Wipro Limited, AIBrain LLC, SoundHound Inc., Visenze Pte Ltd, Twilio, Inc and Amazon Web Services Inc.
Key Developments:In May 2023, Intel and SAP Embark on Strategic Collaboration to Expand Cloud Capabilities the collaboration deepens Intel’s focus on delivering extremely powerful and secure instances for SAP, powered by 4th Gen Intel® Xeon® Scalable processors.
In April 2023, Intel Foundry and Arm Announce Multigeneration Collaboration on Leading-Edge SoC Design, the collaboration will focus on mobile SoC designs first, but allow for potential design expansion into automotive, Internet of Things (IoT), data center, aerospace and government applications.
In April 2023, IBM Launches New QRadar Security Suite to Speed Threat Detection and Response, expansion of the QRadar brand, spanning all core threat detection, investigation and response technologies, with significant investment in innovations across the portfolio.
Components Covered:
• Solution
• Service
Deployment Modes Covered:
• Cloud
• On-Premise
Technologies Covered:
• Data Analytics
• Machine Learning
• Natural Language Processing (NLP)
• Other Technologies
Applications Covered:
• Network Security
• Customer Analytics
• Self-Diagnostics
• Network Optimization
• Virtual Assistance
• Other Applications
Regions Covered:
• North America
o US
o Canada
o Mexico
• Europe
o Germany
o UK
o Italy
o France
o Spain
o Rest of Europe
• Asia Pacific
o Japan
o China
o India
o Australia
o New Zealand
o South Korea
o Rest of Asia Pacific
• South America
o Argentina
o Brazil
o Chile
o Rest of South America
• Middle East & Africa
o Saudi Arabia
o UAE
o Qatar
o South Africa
o Rest of Middle East & Africa
What our report offers:- Market share assessments for the regional and country-level segments
- Strategic recommendations for the new entrants
- Covers Market data for the years 2020, 2021, 2022, 2025, and 2028
- Market Trends (Drivers, Constraints, Opportunities, Threats, Challenges, Investment Opportunities, and recommendations)
- Strategic recommendations in key business segments based on the market estimations
- Competitive landscaping mapping the key common trends
- Company profiling with detailed strategies, financials, and recent developments
- Supply chain trends mapping the latest technological advancements