Global Multimodal AI Market 2024-2031
Global Multimodal AI Market Size, Share & Trends Analysis Report by Component (Software and Service), by Data Modality (Image Data, Text Data, Speech & Voice Data and Video & Audio Data), by Technology (Machine Learning, Natural Language Processing, Computer Vision, Context Awareness and Internet of Things), and by End User (Media & Entertainment, BFSI, IT & Telecommunication, Healthcare, Automotive & Transportation and Others), Forecast Period (2024-2031)
The global multimodal AI market is anticipated to grow at a significant CAGR of 14.9% during the forecast period (2024-2031). The growing adoption of multimodal generative AI models with the improving producing data across diverse modalities like texts, images, and audio is a key factor supporting the growth of the market globally. The increasing focus of market players on introducing generative multimodal AI solutions is further aiding to the market growth. For instance, in March 2023, AWS and NVIDIA collaborated on next-generation Infrastructure for training large machine-learning models and building generative AI applications. The collaboration focused on developing the most scalable, on-demand artificial intelligence (AI) infrastructure that was designed to support the development of generative AI applications and the training of ever-more-complex large language models (LLMs). The increasing investment in AI technology is expected to offer lucrative opportunity to the market growth.
Private Investment in AI by Geographic Area, 2022
Source:Artificial Intelligence Index Report 2023
Segmental Outlook The global multimodal AI market is segmented on the component, data modality, technology and end user. Basedon the component, the market is sub-segmented into software and service. Based on the data modality, the market is sub-segmented into image data, text data, speech & voice data and video & audio data. Based on the technology, the market is sub-segmented into machine learning, natural language processing, computer vision, context awareness and internet of things. Further, on the basis of end user, the market is sub-segmented into media & entertainment, BFSI, IT & telecommunication, healthcare, automotive & transportation and others (gaming). Among the end users, the BFSI sub-segment is anticipated to hold a considerable share of the market owing to the increasing adoption of multimodel AI in fraud detection and customer service automation by analyzing textual, vocal, and transactional data.
The Machine Learning Sub-Segment is Anticipated to Hold a Considerable Share of the Global Multimodal AI Market
Among the technology, the machine learning sub-segment is expected to hold a considerable share of the global multimodal AI market. The segmental growth is attributed to the increasing adoption of machine learning-based development systems to train multimodal AI, which includes natural language processing (NLP) and computer vision.Adopting AI infrastructure for supporting AI model development and training at scale, requires a multi-step procedure that includes setting up, buying, and maintaining a highly parallel software ecosystem.In April 2022, Hewlett Packard Enterprise introduced a new HPE machine learning development system.The new system is an end-to-end solution designed specifically for multimodal AI that combines networking, accelerators, computation, and a machine learning software platform to create and train more accurate AI models more quickly and at scale. Such product launches are further aiding to the growth of the market segment.
Regional OutlookThe global multimodal AI market is further segmented based on geography including North America (the US, and Canada), Europe (UK, Italy, Spain, Germany, France, and the Rest of Europe), Asia-Pacific (India, China, Japan, South Korea, and Rest of Asia), and the Rest of the World (the Middle East & Africa, and Latin America. Among these, Asia-Pacific is anticipated toexhibit highest CAGR during the forecast period. The growing adoption of multimodal AI in applications such as e-commerce, healthcare, and finance drives the growth of the regional market.
North America Hols Considerable Share in the Global Multimodal AI Market
Among all regions, the North America holds considerable share in the global market. Regional market share is attributed to the high rate of development and implementation of multimodal AI solutions. The growing demand of multimodal AI to provide step-by-step assistance to build high-converting digital storefronts and automate complex tasks like managing multi-product catalog data across the region is further contributing to the regional market share. In September 2023, Salesforce launched Einstein Copilota new generative AI-powered conversational assistant. Using natural language prompts, Einstein Copilot completely offers multiple languages, personalized product promotions, and SEO metadata generation that drive conversions and customize and design storefront components with natural language prompts. Such product innovations are further contributing to the regional market growth.
Market Players OutlookThe major companies serving the multimodal AI market include Google LLC, IBM Corp., Meta Platforms, Inc., Microsoft Corp., OpenAIOpCo, LLC, and others. The market players are considerably contributing to the market growth by the adoption of various strategies including mergers and acquisitions, partnerships, collaborations, funding, and new product launches, to stay competitive in the market. For instance, in May 2023, Appen Ltd. and Reka AI partnered to build customized multi-modal LLM Applications. For enterprises, Appen and Reka have developed a complete and functional generative AI solution.
The Report CoversMarket value data analysis of 2023 and forecast to 2031.
Annualized market revenues ($ million) for each market segment.
Country-wise analysis of major geographical regions.
Key companies operating in the global multimodal AImarket. Based on the availability of data, information related to new product launches, and relevant news is also available in the report.
Analysis of business strategies by identifying the key market segments positioned for strong growth in the future.
Analysis of market-entry and market expansion strategies.
Competitive strategies by identifying ‘who-stands-where’ in the market.