Neuromorphic Sensors Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032
The Neuromorphic Sensors Market size will grow at over 28% CAGR during 2024-2032, driven by the increased focus on energy-efficient technologies. According to IEA, in 2022, global energy intensity, which measures the efficiency of energy use in the global economy, improved by just over 2%. This indicates that each unit of energy consumed in 2022 generated 2% more economic output compared to the previous year. Neuromorphic sensors are designed to emulate the brain’s energy-efficient processing capabilities. These sensors offer low power consumption and high efficiency compared to traditional sensor systems, making them ideal for applications in energy-sensitive environments such as IoT devices, wearable technologies, and smart grids.
The integration of neuromorphic sensors with AI and machine learning algorithms enables more sophisticated and intelligent systems capable of processing sensory data in real-time, much like the human brain. By combining the advanced pattern recognition capabilities of AI with the sensory precision of neuromorphic sensors, industries can achieve greater accuracy in applications ranging from autonomous vehicles to healthcare diagnostics. As AI and machine learning technologies continue to evolve, their integration with neuromorphic sensors is expected to drive significant advancements.
The neuromorphic sensors industry is classified based on sensor type, deployment mode, component, technology, application, and region.
The touch sensors segment will grow rapidly through 2032, as industries continue to adopt advanced technologies to enhance human-machine interactions. These sensors are ideal for applications in robotics, consumer electronics, and automotive sectors. Touch sensors in neuromorphic systems offer several advantages, including low power consumption, faster response times, and enhanced sensitivity. These features are driving their adoption in consumer electronics, where touchscreens and touch-sensitive devices are becoming ubiquitous.
The cloud-based systems segment will witness decent growth through 2032, owing to real-time insights and decision-making. Cloud-based systems offer scalable and flexible solutions for managing the vast amounts of data generated by neuromorphic sensors, making them indispensable for applications in smart cities, healthcare, and industrial automation. This model allows for seamless data integration and analysis, facilitating advanced machine learning and artificial intelligence algorithms to process sensory data at unprecedented speeds.
Europe Neuromorphic Sensors Industry will undergo positive transformation through 2032, driven by increasing investments in R and D and a strong focus on innovation across various industries. Europe’s robust industrial base, coupled with its emphasis on automation and digitization, is creating a conducive environment for the adoption of neuromorphic sensors across multiple sectors, including automotive, healthcare, and consumer electronics. The automotive industry in Europe is one of the primary drivers of neuromorphic sensor adoption, with companies focusing on enhancing the safety and efficiency of autonomous vehicles.
Chapter 1 Methodology and Scope
1.1 Market scope and definition
1.2 Base estimates and calculations
1.3 Forecast calculation
1.4 Data sources
1.4.1 Primary
1.4.2 Secondary
1.4.2.1 Paid sources
1.4.2.2 Public sources
Chapter 2 Executive Summary
2.1 Industry 360º synopsis, 2021 - 2032
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.2 Vendor matrix
3.3 Profit margin analysis
3.4 Technology and innovation landscape
3.5 Patent analysis
3.6 Key news and initiatives
3.7 Regulatory landscape
3.8 Impact forces
3.8.1 Growth drivers
3.8.1.1 Advancements in Artificial Intelligence (AI) and Machine Learning (ML)
3.8.1.2 Increasing demand for energy-efficient computing
3.8.1.3 Growing applications in healthcare and biomedical devices
3.8.1.4 Development of autonomous systems and robotics
3.8.1.5 Rising investment in research and development
3.8.2 Industry pitfalls and challenges
3.8.2.1 High development and manufacturing costs
3.8.2.2 Limited standardization and integration issues
3.9 Growth potential analysis
3.10 Porter’s analysis
3.10.1 Supplier power
3.10.2 Buyer power
3.10.3 Threat of new entrants
3.10.4 Threat of substitutes
3.10.5 Industry rivalry
3.11 PESTEL analysis
Chapter 4 Competitive Landscape, 2023
4.1 Introduction
4.2 Company market share analysis
4.3 Competitive positioning matrix
4.4 Strategic outlook matrix
Chapter 5 Market Estimates and Forecast, By Sensor Type, 2021 - 2032 (USD million and Units)
5.1 Key trends
5.2 Image sensors
5.2.1 Event-based cameras
5.2.2 Dynamic vision sensors (DVS)
5.3 Audio Sensors
5.3.1 Neuromorphic microphones
5.3.2 Event-based microphones
5.4 Olfactory sensors
5.5 Touch sensors
5.6 Others
5.6.1 Proximity sensors
5.6.2 Inertial measurement units (IMUs)
Chapter 6 Market Estimates and Forecast, By Component, 2021 - 2032 (USD million)
6.1 Key trends
6.2 Hardware
6.2.1 Sensor chips
6.2.2 Processors
6.2.3 Memory
6.3 Software
6.3.1 Neuromorphic algorithms
6.3.2 AI and machine learning models
Chapter 7 Market Estimates and Forecast, By Deployment Mode, 2021 - 2032 (USD million and Units)
7.1 Key trends
7.2 Edge devices
7.3 Cloud-based systems
Chapter 8 Market Estimates and Forecast, By Technology, 2021 - 2032 (USD million)