Machine Learning in Supply Chain Management Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032

Machine Learning in Supply Chain Management Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032


Machine Learning in Supply Chain Management Market Size will grow at over 29% CAGR during 2024-2032, driven by the expansion of e-commerce and digital platforms. According to Hostinger, the e-commerce market is anticipated to generate $5.5 trillion, with sales expected to account for 23% of the global retail sector by 2027. Digital platforms, with their vast reach and customer interaction points, create a wealth of data that needs to be processed and analyzed to enhance supply chain efficiency. Machine learning technologies provide insights into consumer behavior, optimizing inventory levels, and streamlining logistics.

As organizations grapple with increasingly complex supply chain data, the need for sophisticated data management systems has never been greater. These solutions facilitate the seamless collection, storage, and analysis of vast amounts of data from diverse sources, enabling more accurate and actionable insights. By leveraging technologies such as cloud-based data platforms, data lakes, and real-time analytics, companies can enhance their ability to manage and utilize data effectively. This integration improves operational efficiency and supports advanced machine learning applications, favoring market growth.

The machine learning in supply chain management industry is classified based on component, technology, organization size, deployment mode, application, end-user, and region.

The services segment will grow rapidly through 2032. By leveraging machine learning algorithms, companies can optimize inventory management, streamline logistics, and mitigate risks associated with supply chain disruptions. As businesses increasingly adopt these services, they gain a competitive edge through improved accuracy in forecasting and enhanced operational agility. The integration of machine learning services enables organizations to anticipate current trends, manage resources more effectively, and respond swiftly to dynamic conditions.

The unsupervised segment will record significant growth through 2032, as unsupervised learning algorithms identify hidden patterns and relationships within data without predefined labels. This technology is instrumental in discovering insights from complex and unstructured supply chain data. By applying unsupervised learning, businesses can uncover previously unnoticed correlations, optimize routing and logistics, and enhance supplier selection processes. The adaptability of unsupervised learning algorithms to evolving data makes them highly valuable for supply chains, where the ability to adapt to new information and market conditions is crucial.

Europe machine learning in supply chain management industry will witness decent growth through 2032, driven by the strategic focus on digital transformation and innovation. European countries are investing heavily in R and D, fostering collaborations between technology providers and supply chain professionals. Additionally, Europe’s stringent regulatory environment and emphasis on data privacy are shaping the development and deployment of machine learning solutions, ensuring compliance while maximizing operational benefits, and adding to market value.


Chapter 1 Methodology and Scope
1.1 Market scope and definition
1.2 Research design
1.2.1 Research approach
1.2.2 Data collection methods
1.3 Base estimates and calculations
1.3.1 Base year calculation
1.3.2 Key trends for market estimation
1.4 Forecast model
1.5 Primary research and validation
1.5.1 Primary sources
1.5.2 Data mining sources
Chapter 2 Executive Summary
2.1 Industry 360° synopsis, 2021 - 2032
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.2 Supplier landscape
3.2.1 Platform providers
3.2.2 Software provider
3.2.3 Service providers
3.2.4 Distribution channel
3.2.5 End-user
3.3 Profit margin analysis
3.4 Technology and innovation landscape
3.5 Patent analysis
3.6 Key news and initiatives
3.7 Regulatory landscape
3.8 Impact forces
3.8.1 Growth drivers
3.8.1.1 Optimization of transportation routes
3.8.1.2 Enhanced customer satisfaction
3.8.1.3 Improved demand forecasting and inventory management
3.8.1.4 Growing need for operational efficiency
3.8.2 Industry pitfalls and challenges
3.8.2.1 Data security and privacy concerns
3.8.2.2 Integration complexity with existing systems
3.9 Growth potential analysis
3.10 Porter’s analysis
3.11 PESTEL analysis
Chapter 4 Competitive Landscape, 2023
4.1 Introduction
4.2 Company market share analysis
4.3 Competitive positioning matrix
4.4 Strategic outlook matrix
Chapter 5 Market Estimates and Forecast, By Component, 2021 - 2032 ($Bn)
5.1 Key trends
5.2 Software
5.3 Services
5.3.1 Managed
5.3.2 Professional
Chapter 6 Market Estimates and Forecast, By Technique, 2021 - 2032 ($Bn)
6.1 Key trends
6.2 Supervised learning
6.3 Unsupervised learning
Chapter 7 Market Estimates and Forecast, By Organization Size, 2021 - 2032 ($Bn)
7.1 Key trends
7.2 Large enterprises
7.3 Small and medium-sized enterprises (SMEs)
Chapter 8 Market Estimates and Forecast, By Deployment Model, 2021 - 2032 ($Bn)
8.1 Key trends
8.2 On-premises
8.3 Cloud-based
Chapter 9 Market Estimates and Forecast, By Application, 2021 - 2032 ($Bn)
9.1 Key trends
9.2 Demand forecasting
9.3 Supplier relationship management (SRM)
9.4 Risk management
9.5 Product lifecycle management
9.6 Sales and operations planning (S and OP)
9.7 Others
Chapter 10 Market Estimates and Forecast, By End User, 2021 - 2032 ($Bn)
10.1 Key trends
10.2 Retail and e-commerce
10.3 Manufacturing
10.4 Healthcare
10.5 Automotive
10.6 Food and beverage
10.7 Consumer goods
10.8 Others
Chapter 11 Market Estimates and Forecast, By Region, 2021 - 2032 ($Bn)
11.1 Key trends
11.2 North America
11.2.1 U.S.
11.2.2 Canada
11.3 Europe
11.3.1 UK
11.3.2 Germany
11.3.3 France
11.3.4 Italy
11.3.5 Spain
11.3.6 Russia
11.3.7 Nordics
11.3.8 Rest of Europe
11.4 Asia Pacific
11.4.1 China
11.4.2 India
11.4.3 Japan
11.4.4 Australia
11.4.5 South Korea
11.4.6 Southeast Asia
11.4.7 Rest of Asia Pacific
11.5 Latin America
11.5.1 Brazil
11.5.2 Mexico
11.5.3 Argentina
11.5.4 Rest of Latin America
11.6 MEA
11.6.1 UAE
11.6.2 Saudi Arabia
11.6.3 South Africa
11.6.4 Rest of MEA
Chapter 12 Company Profiles
12.1 Amazon Web Services, Inc. (AWS)
12.2 Blue Yonder Group, Inc.
12.3 C.H. Robinson Worldwide, Inc.
12.4 Convoy, Inc.
12.5 Coupa Software Inc.
12.6 DHL Supply Chain
12.7 FedEx Corporation
12.8 Flexport, Inc.
12.9 Google LLC
12.10 Infor, Inc.
12.11 International Business Machines Corporation (IBM)
12.12 Locus Robotics Corporation
12.13 Manhattan Associates, Inc.
12.14 Microsoft Corporation
12.15 Oracle Corporation
12.16 SAP SE
12.17 Trimble Inc.
12.18 Uber Technologies, Inc.
12.19 United Parcel Service, Inc.
12.20 Waymo LLC
 

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings