Machine Learning in Logistics market size was valued at USD 2.8 billion in 2023 and is estimated to register a CAGR of over 23% between 2024 and 2032, led by strong demand for improved operational efficiency and cost savings. By leveraging machine learning (ML) algorithms, logistics firms can analyze extensive data sets to forecast demand, refine route planning, and enhance inventory management.
With machine learning, logistics providers can deliver precise delivery estimates, monitor shipments in real time, and customize services based on customer history and preferences. The booming e-commerce sector, coupled with rising demands for swift and reliable deliveries, intensifies the need for ML solutions that bolster responsiveness and agility. For example, in January 2024, Lloyd List Intelligence unveiled an 'air traffic control' system for global commercial shipping, offering timely data on vessel arrivals, departures, and berth times to mitigate supply chain challenges.
The overall industry is divided into component, technique, organization size, deployment model, application, end user, and region.
Based on component, the machine learning in logistics market size from the services segment is slated to witness significant growth during 2024-2032 due to its critical role in implementing, managing, and optimizing ML solutions within the logistics sector. Services like consulting, system integration, and management are vital for firms to adeptly implement machine learning, customize solutions, and integrate them with pre-existing systems.
Machine learning in logistics market value from the fleet management segment will foresee considerable growth up to 2032. This is driven by the need for harnessing advanced analytics to optimize vehicle operations and improve overall efficiency. ML algorithms analyze data from various sources, such as GPS, telematics, and driver behavior, to enhance route planning, monitor vehicle performance, and predict maintenance needs.
Asia Pacific machine learning in logistics industry size is anticipated to witness substantial growth through 2032, fueled by swift economic progress, surging e-commerce, and a focus on supply chain refinement. With urbanization and industrial growth on the rise, APAC nations are increasingly turning to advanced logistics solutions to adeptly manage intricate supply chains and high goods volumes in the region.
Chapter 1 Research Methodology
1.1 Research design
1.1.1 Research approach
1.1.2 Data collection methods
1.2 Base estimates and calculations
1.2.1 Base year calculation
1.2.2 Key trends for market estimates
1.3 Forecast model
1.4 Primary research & validation
1.4.1 Primary sources
1.4.2 Data mining sources
1.5 Market definitions
Chapter 2 Executive Summary
2.1 Industry 360° synopsis, 2021-2032
2.2 Business trends
2.2.1 Total Addressable Market (TAM), 2024 - 2032
2.2.1.1 TAM trends
2.3 Regional trends
2.4 Component trends
2.5 Technique trends
2.6 Organization size trends
2.7 Deployment model trends
2.8 Application trends
2.9 End-user trends
Chapter 3 Industry Insights
3.1 Industry ecosystem
3.1.1 Platform provider
3.1.2 Software provider
3.1.3 Service provider
3.1.4 Distribution channel
3.1.5 End-user
3.2 Supplier landscape
3.2.1 Supplier landscape
3.3 Technology and innovation landscape
3.3.1 Cloud computing 3.3.2 Big data analytics
3.3.3 Robotic process automation (RPA)
3.3.4 Predictive analytics
3.4 Patent analysis
3.5 Key news and initiatives
3.6 Regulatory landscape
3.6.1 North America
3.6.1.1 California Consumer Privacy Act (CCPA)
3.6.1.2 Gramm-Leach-Bliley Act (GLBA)
3.6.1.3 Federal Trade Commission (FTC) Regulations
3.6.1.4 Personal Information Protection and Electronic Documents Act (PIPEDA)
3.6.1.5 Transportation Regulations
3.6.2 Europe
3.6.2.1 UK General Data Protection Regulation (UK GDPR)
3.6.2.2 Federal Data Protection Act (Bundesdatenschutzgesetz, BDSG)
3.6.2.3 French Data Protection Act (Loi Informatique et Libertés)
3.6.2.4 Italian Data Protection Code (Codice in materia di protezione dei dati personali)
3.6.2.5 Organic Law on Data Protection and Digital Rights Guarantee (LOPDGDD)
3.6.2.6 Federal Law on Personal Data (No. 152-FZ)
3.6.2.7 National Data Protection Laws
3.6.3 Asia Pacific
3.6.3.1 Cybersecurity Law
3.6.3.2 National Strategy for Artificial Intelligence
3.6.3.3 Strategic Innovation Promotion Program (SIP)
3.6.3.4 Smart Logistics Initiative
3.6.3.5 AI Ethics Framework
3.6.3.6 Law No. 27 of 2022 on Personal Data Protection (PDP Law)
3.6.4 Latin America
3.6.4.1 General Data Protection Law (Lei Geral de Proteção de Dados - LGPD)
3.6.4.2 Federal Law on Protection of Personal Data Held by Private Parties (Ley Federal de Protección de Datos Personales en Posesión de los Particulares)
3.6.4.3 Personal Data Protection Law (Law No.
25.326)
3.6.5 MEA
3.6.5.1 Federal Decree-Law No. 45 of 2021 on the Protection of Personal Data
3.6.5.2 Personal Data Protection Law (PDPL)
3.6.5.3 Protection of Personal Information Act (POPIA)
3.7 Industry impact forces
3.7.1 Growth drivers
3.7 .
1.1 Incre ased o p t im iz at io n o f s upply cha in o per a tio n s
3.7.1.2 Automation of warehousing operations
3.7 .1. 3 Gro wth o f e-co mmer ce s ecto r
3.7 .1. 4 R is ing need fo r enhan ced cu sto me r expe rience
3.7.2 Industry pitfalls and challenges
3.7.2.1 Data quality and integration concern
3.7.2.2 Integration with legacy systems
3.8 Growth potential analysis
3.9 Porter's analysis
3.10 PESTEL analysis
Chapter 4 Competitive Landscape
4.1 Introduction
4.2 Company market share analysis
4.3 Competitive positioning matrix
4.4 Strategic outlook matrix
Chapter 5 Machine Learning in Logistics Market, By Component
5.1 Key trends
5.2 Software
5.3 Services
Chapter 6 Machine Learning in Logistics Market, By Technique
6.1 Key trends
6.2 Supervised learning
6.3 Unsupervised learning
Chapter 7 Machine Learning in Logistics Market, By Organization Size
7.1 Key trends
7.2 Large enterprises
7.3 Small and medium-sized enterprises (SMEs)
Chapter 8 Machine Learning in Logistics Market, By Deployment Model
8.1 Key trends
8.2 Cloud-based
8.3 On-premises
Chapter 9 Machine Learning in Logistics Market, By Application
9.1 Key trends
9.2 Inventory Management
9.3 Supply Chain Planning
9.4 Transportation Management
9.5 Warehouse Management
9.6 Fleet Management
9.7 Risk Management and Security
9.8 Others
Chapter 10 Machine Learning in Logistics Market, By End Users
10.1 Key trends
10.2 Retail and E-commerce
10.3 Manufacturing
10.4 Healthcare
10.5 Automotive
10.6 Food & Beverage
10.7 Consumer Goods
10.8 Others
Chapter 11 Machine Learning in Logistics Market, By Region
11.1 Key trends
11.2 North America
11.3 Europe
11.4 Asia Pacific
11.5 Latin America
11.6 MEA
Chapter 12 Company Profiles
12.1 Amazon Web Services (AWS)
12.1.1 Global overview
12.1.2 Market/Business overview
12.1.3 Financial data
12.1.3.1 Sales revenue, 2021-2023
12.1.4 Product landscape
12.1.5 Strategic outlook
12.1.6 SWOT analysis
12.2 Blue Yonder Group, Inc.
12.2.1 Global overview
12.2.2 Market/Business overview
12.2.3 Financial data
12.2.3.1 Sales Revenue, 2022-2024
12.2.4 Product landscape
12.2.5 Strategic outlook
12.2.6 SWOT analysis
12.3 C.H. Robinson Worldwide, Inc.
12.3.1 Global overview
12.3.2 Market/Business overview
12.3.3 Financial data
12.3.3.1 Sales Revenue, 2021-2023
12.3.4 Product landscape
12.3.5 Strategic outlook
12.3.6 SWOT analysis
12.4 Coupa Software Inc.
12.4.1 Global overview
12.4.2 Market/Business overview
12.4.3 Financial data
12.4.4 Product landscape
12.4.5 Strategic outlook
12.4.6 SWOT analysis
12.5 DHL Supply Chain
12.5.1 Global Overview
12.5.2 Market/Business Overview
12.5.3 Financial Data
12.5.3.1 Sales Revenue, 2022-2024
12.5.4 Product Landscape
12.5.5 Strategic outlook
12.5.6 SWOT analysis
12.6 FedEx Corporation
12.6.1 Global overview
12.6.2 Market/Business overview
12.6.3 Financial data
12.6.3.1 Sales Revenue, 2021-2023
12.6.4 Product landscape
12.6.5 Strategic outlook
12.6.6 SWOT analysis
12.7 Flexport, Inc.
12.7.1 Global Overview
12.7.2 Market/Business Overview
12.7.3 Financial data
12.7.4 Product Landscape
12.7.5 Strategic outlook
12.7.6 SWOT analysis
12.8 Google LLC
12.8.1 Global Overview
12.8.2 Market/Business Overview
12.8.3 Financial Data
12.8.3.1 Sales Revenue, 2021-2023
12.8.4 Product Landscape
12.8.5 Strategic outlook
12.8.6 SWOT analysis
12.9 Infor, Inc.
12.9.1 Global Overview
12.9.2 Market/Business Overview
12.9.3 Financial data
12.9.4 Product Landscape
12.9.5 Strategic outlook
12.9.6 SWOT analysis
12.10 International Business Machines Corporation (IBM)