Artificial Intelligence in Drug Discovery Market, Opportunity, Growth Drivers, Industry Trend Analysis and Forecast, 2024-2032
Artificial Intelligence in Drug Discovery Market size will exhibit a 29.6% CAGR between 2024 and 2032, driven by the increasing adoption of cutting-edge technologies in pharmaceutical research and development. AI-driven drug discovery startups and established firms are witnessing a surge in investments and funding. Partnerships are increasingly forming between AI tech providers, pharmaceutical firms, and academic institutions. These alliances seek to merge AI expertise with drug discovery knowledge, expediting the creation of new therapeutics. For example, in March 2024, Sanofi collaborated with OpenAI and Formation Bio to harness AI in expediting drug development.
The AI in drug discovery industry is segmented into component, technology, application type, therapeutic area, end-use, and region.
By component, the industry value from the services segment will exhibit lucrative growth up to 2032. Machine learning, deep learning, and other AI techniques have made significant strides, enhancing the accuracy and capabilities of predictive models in drug discovery. Such advancements are positioning AI as an invaluable asset in pinpointing new drug candidates and deciphering disease mechanisms.
With respect to therapeutic area, the artificial intelligence in drug discovery market size from the metabolic diseases segment will record notable expansion through 2032. AI algorithms analyze complex biological data to identify potential targets for metabolic diseases by examining genetic, proteomic, and metabolic profiles to find new drug targets and validate their relevance. AI also enables the development of personalized treatment plans by analyzing individual patient data, including genetic information and metabolic profiles.
Europe AI in drug discovery industry share will expand from 2024 to 2032 due to significant investments in AI startups focused on drug discovery. Several pharmaceutical companies and research institutions are increasingly leveraging AI algorithms like AI-driven target identification, molecule generation, and optimization for drug discovery processes. The surging regulatory support via guidelines and frameworks to ensure the safety, efficacy, and ethical use of AI-driven technologies in pharmaceutical research will also boost regional market growth.
Chapter 1 Methodology and Scope
1.1 Market scope and definitions
1.2 Research design
1.2.1 Research approach
1.2.2 Data collection methods
1.3 Base estimates and calculations
1.3.1 Base year calculation
1.3.2 Key trends for market estimation
1.4 Forecast model
1.5 Primary research and validation
1.5.1 Primary sources
1.5.2 Data mining sources
Chapter 2 Executive Summary
2.1 Industry 360° synopsis
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.2 Industry impact forces
3.2.1 Growth drivers
3.2.1.1 Growing number of cross industry collaboration and partnership
3.2.1.2 Artificial intelligence reduces cost and time utilized in the drug discovery and development process
3.2.1.3 Rising prevalence of chronic and infectious diseases
3.2.2 Industry pitfalls and challenges
3.2.2.1 Lack of data sets in the field of drug discovery
3.2.2.2 Limited understanding and expertise
3.3 Growth potential analysis
3.4 Regulatory landscape
3.5 AI in drug discovery - drugs by stage and therapeutic area
3.6 Funding received for AI in drug discovery, 2018-2020
3.7 Porter's analysis
3.8 PESTEL analysis
Chapter 4 Competitive Landscape, 2023
4.1 Introduction
4.2 Investment and partnership landscape
4.2.1 Investment landscape
4.2.2 Partnership landscape
4.3 Company matrix analysis
4.4 Competitive analysis of major market players
4.5 Competitive positioning matrix
4.6 Strategy dashboard
Chapter 5 Market Estimates and Forecast, By Component, 2018 – 2032 ($ Mn)
5.1 Key trends
5.2 Software
5.3 Services
Chapter 6 Market Estimates and Forecast, By Technology, 2018 – 2032 ($ Mn)
6.1 Key trends
6.2 Machine learning
6.2.1 Deep learning
6.2.2 Supervised learning
6.2.3 Unsupervised learning
6.2.4 Other machine learning technologies
6.3 Other technologies
Chapter 7 Market Estimates and Forecast, By Application Type, 2018 – 2032 ($ Mn)
7.1 Key trends
7.2 Molecular library screening
7.3 Target identification
7.4 Drug optimization and repurposing
7.5 De novo drug designing
7.6 Preclinical testing
Chapter 8 Market Estimates and Forecast, By Therapeutic Area, 2018 – 2032 ($ Mn)
8.1 Key trends
8.2 Oncology
8.3 Neurodegenerative diseases
8.4 Inflammatory diseases
8.5 Infectious diseases
8.6 Metabolic diseases
8.7 Rare diseases
8.8 Cardiovascular diseases
8.9 Other therapeutic areas
Chapter 9 Market Estimates and Forecast, By End-Use, 2018 – 2032 ($ Mn)
9.1 Key trends
9.2 Pharmaceutical and biotechnology companies
9.3 Contract research organization (CROs)
9.4 Other end-users
Chapter 10 Market Estimates and Forecast, By Region, 2018 – 2032 ($ Mn)