AI in Predictive Toxicology Market Size - By Technology (Machine Learning, Natural Language Processing, Computer Vision), Toxicity Endpoints (Genotoxicity, Hepatotoxicity, Neurotoxicity, Cardiotoxicity), Component, End User & Global Forecast, 2023 - 2032
AI in Predictive Toxicology Market Size - By Technology (Machine Learning, Natural Language Processing, Computer Vision), Toxicity Endpoints (Genotoxicity, Hepatotoxicity, Neurotoxicity, Cardiotoxicity), Component, End User & Global Forecast, 2023 - 2032
AI in Predictive Toxicology Market size is projected to expand at over 29.5% CAGR from 2023-2032 propelled by the growing demand for efficient drug development methods worldwide. AI has emerged as a transformative tool considering the innovative approaches sought by the pharmaceutical sector to accelerate drug discovery and development processes. AI-powered predictive toxicology models enable the early identification of potential toxicities, for streamlining decision-making and reducing the need for time-consuming and costly experimental testing.
Furthermore, the rising ethical considerations along with regulatory pressures to minimize animal experimentation are compelling several industries to adopt alternative methods. For instance, the Government of India authorized an amendment to the New Drugs and Clinical Trial Rules (2023) to eliminate the use of animals in research, particularly drug testing. This shift towards cruelty-free and humane practices for sustainable R&D approaches will boost the industry growth.
The AI in predictive toxicology industry is segmented into component, technology, toxicity endpoint, end user, and region.
Based on component, the market share from the services segment generated substantial revenue in 2022 and is estimated to record considerable growth through 2032. AI-driven services are essential in predictive toxicology as they provide pharmaceutical and chemical sectors with valuable insights into potential toxicity issues during drug development and product testing. Additionally, the growing demand for accurate and efficient toxicology predictions is surging the need for AI-based services for enhanced decision-making and regulatory compliance.
In terms of end user, the AI in predictive toxicology market from the chemical & cosmetics segment is anticipated to depict robust growth from 2023 to 2032. This can be attributed to rising prioritization of the chemical and cosmetics sectors on safety assessments and regulatory compliance. AI-based predictive toxicology solutions offer valuable insights into potential risks and the toxicity of ingredients. The growing need for accurate toxicity predictions in chemical formulations and cosmetic products is also likely to fuel the segment expansion.
Regionally, the Asia Pacific AI in predictive toxicology industry is poised to exhibit a notable growth rate between 2023 and 2032. This is attributed to the expanding pharmaceutical and biotechnology industries coupled with the increasing investments in AI technologies across the region. With regulatory agencies emphasizing safety assessments, AI applications are widely deployed to offer efficient and accurate predictive models for toxicity testing. Moreover, the rising collaborative efforts between industry players and research institutions will also accelerate the regional industry expansion.
Chapter 1 Methodology & Scope
1.1 Market scope & definition
1.2 Base estimates & calculations
1.3 Forecast calculation
1.4 Data Sources
1.4.1 Primary
1.4.2 Secondary
1.4.2.1 Paid sources
1.4.2.2 Public sources
Chapter 2 Executive Summary
2.1 AI in predictive toxicology market 360 degree synopsis, 2018 - 2032
2.2 Business trends
2.2.1 Total Addressable Market (TAM), 2023-2032
2.3 Regional trends
2.4 Component trends
2.5 Technology trends
2.6 Toxicity endpoints trends
2.7 End-user trends
Chapter 3 AI in Predictive Toxicology Industry Insights
3.1 Impact on COVID-19
3.2 Industry ecosystem analysis
3.3 Vendor matrix
3.4 Profit margin analysis
3.5 Technology innovation landscape
3.6 Patent analysis
3.7 Key news and initiatives
3.8 Regulatory landscape
3.9 Impact forces
3.9.1 Growth drivers
3.9.1.1 Rising investments in pharmaceutical AI startups
3.9.1.2 Increased demand for efficient drug development
3.9.1.3 Advancements in AI technologies
3.9.1.4 Growing need for efficient screening of chemical compounds
3.9.1.5 Rising concerns about chemical safety
3.9.2 Industry pitfalls & challenges
3.9.2.1 Insufficient or poor-quality data compromising the accuracy of predictive models
3.9.2.2 Complexity in the integration of AI models
3.10 Growth potential analysis
3.11 Porter's analysis
3.12 PESTEL analysis
Chapter 4 Competitive Landscape, 2022
4.1 Introduction
4.2 Company market share, 2022
4.3 Competitive analysis of major market players, 2022
4.3.1 Benevolent AI
4.3.2 Chemaxon Ltd.
4.3.3 Exscientia PLC
4.3.4 Insilico Medicine
4.3.5 Instem plc
4.3.6 Lhasa Limited
4.3.7 Recursion Pharmaceuticals
4.4 Competitive positioning matrix, 2022
4.5 Strategic outlook matrix, 2022
Chapter 5 AI in Predictive Toxicology Market Estimates & Forecast, by Component (Revenue)
5.1 Key trends, by component
5.2 Solution
5.3 Services
Chapter 6 AI in Predictive Toxicology Market Estimates & Forecast, By Technology (Revenue)
6.1 Key trends, by technology
6.2 Machine learning
6.3 Natural language processing
6.4 Computer vision
6.5 Others
Chapter 7 AI in Predictive Toxicology Market Estimates & Forecast, By Toxicity Endpoints (Revenue)
7.1 Key trends, by toxicity endpoints
7.2 Genotoxicity
7.3 Hepatotoxicity
7.4 Neurotoxicity
7.5 Cardiotoxicity
7.6 Others
Chapter 8 AI in Predictive Toxicology Market Estimates & Forecast, By End-User (Revenue)
8.1 Key trends, by end-user
8.2 Pharmaceutical and biotechnology companies
8.3 Chemical and cosmetics
8.4 Contract research organizations
8.5 Others
Chapter 9 AI in Predictive Toxicology Market Estimates & Forecast, By Region