AI in Oncology Market – By Component (Software Solutions, Hardware, Services), Cancer Type (Breast, Lung, Brain, Prostate, Colorectal), Application (Diagnostics, Immunotherapy, Radiation Therapy, R&D), End-use – Global Forecast 2024 – 2032
Global AI in Oncology Market will garner 29.2% CAGR during 2024-2032, driven by technological advancements in AI algorithms and increasing demand for personalized treatment options.
The rising prevalence of cancer worldwide is propelling significant growth in the market. As per UICC, over 35 million new cancer cases are projected for 2050, marking a 77% surge from the estimated 20 million cases in 2022. With cancer cases steadily increasing across the globe, there is a pressing need for advanced technologies to enhance diagnosis, treatment, and patient care. The integration of AI in oncology offers promising solutions to tackle this growing burden by providing more accurate diagnostics, personalized treatment plans, and improved patient outcomes. As healthcare providers strive to meet the rising demand for cancer care, the adoption of AI technologies becomes increasingly indispensable, driving industry expansion.
The AI in Oncology industry is classified based on component, cancer type, application, end-use, and region.
Software segment will expand rapidly by 2032, attributed to its pivotal role in analyzing complex medical data, facilitating accurate diagnosis, and aiding in treatment decision-making processes. Advanced AI algorithms embedded within oncology software solutions empower healthcare professionals to efficiently manage patient data, predict treatment outcomes, and customize therapy regimens tailored to individual patient profiles. Furthermore, the advent of cloud-based software platforms offers enhanced accessibility, scalability, and interoperability, driving the adoption of AI-driven software solutions across healthcare settings worldwide.
Brain tumors segment will grow rapidly till 2032, as the incidence of brain tumors is escalating globally, necessitating innovative approaches for early detection, precise diagnosis, and effective treatment strategies. AI-powered imaging techniques, such as MRI and CT scans, coupled with advanced analytics algorithms, enable healthcare practitioners to accurately identify and classify brain tumors, thereby facilitating timely interventions and improved patient outcomes. Moreover, the integration of AI-based predictive models aids in prognostic assessments, guiding clinicians in formulating tailored treatment plans and optimizing therapeutic efficacy for patients afflicted with brain tumors.
Asia Pacific AI in Oncology industry will garner a decent growth rate till 2032, driven by the rising incidence of cancer, increasing healthcare expenditure, and rapid technological advancements. Countries like China, India, and Japan are at the forefront of AI adoption in oncology, leveraging innovative technologies to address the growing burden of cancer within their populations. Moreover, supportive government initiatives aimed at promoting healthcare infrastructure development and fostering research collaborations are further augmenting market growth in the region. With a burgeoning patient population and a burgeoning demand for advanced oncology solutions, the region presents immense opportunities for stakeholders.
Chapter 1 Methodology & Scope
1.1 Market scope & definition
1.2 Base estimates & calculations
1.3 Data collection
1.4 Forecast parameters
1.5 Data sources
1.5.1 Primary
1.5.2 Secondary
1.5.2.1 Paid sources
1.5.2.2 Public sources
Chapter 2 Executive Summary
2.1 Industry 360 degree synopsis
Chapter 3 Industry Insights
3.1 Industry ecosystem analysis
3.2 Industry impact forces
3.2.1 Growth drivers
3.2.1.1 Rising demand for early detection and classification of cancer
3.2.1.2 Increasing prevalence of cancer
3.2.1.3 Growing adoption of precision medicine
3.2.1.4 Surging advancements in healthcare infrastructure
3.2.2 Industry pitfalls & challenges
3.2.2.1 High procurement and implementation cost
3.2.2.2 High impact of regulations
3.3 Growth potential analysis
3.4 Technological landscape
3.5 Regulatory landscape
3.6 Porter's analysis
3.6.1 Supplier power
3.6.2 Buyer power
3.6.3 Threat of new entrants
3.6.4 Threat of substitutes
3.6.5 Industry rivalry
3.7 PESTEL analysis
Chapter 4 Competitive Landscape, 2023
4.1 Introduction
4.2 Company market share analysis
4.3 Competitive positioning matrix
4.4 Strategy outlook matrix
Chapter 5 Market Estimates and Forecast, By Component, 2018 - 2032 ($ Mn)
5.1 Key trends
5.2 Software solutions
5.3 Hardware
5.4 Services
Chapter 6 Market Estimates and Forecast, By Cancer Type, 2018 - 2032 ($ Mn)
6.1 Key trends
6.2 Breast cancer
6.3 Lung cancer
6.4 Prostate cancer
6.5 Colorectal cancer
6.6 Brain tumor
6.7 Other cancer types
Chapter 7 Market Estimates and Forecast, By Application, 2018 - 2032 ($ Mn)
7.1 Key trends
7.2 Diagnostics
7.3 Radiation therapy
7.4 Research and development
7.5 Chemotherapy
7.6 Immunotherapy
Chapter 8 Market Estimates and Forecast, By End-use, 2018 - 2032 ($ Mn)
8.1 key trends
8.2 Hospitals
8.3 Diagnostics centers
8.4 Specialty clinics
8.5 Other end-users
Chapter 9 Market Estimates and Forecast, By Region, 2018 - 2032 ($ Mn)