Synthetic Data Market Size & Share Analysis - Growth Trends & Forecasts (2025 - 2030)

The Synthetic Data Market size is estimated at USD 0.51 billion in 2025, and is expected to reach USD 2.67 billion by 2030, at a CAGR of 39.40% during the forecast period (2025-2030).

The synthetic data market is experiencing significant growth, driven by increasing concerns over data privacy, the rapid adoption of artificial intelligence (AI) and machine learning (ML) technologies, and the need for cost-efficient and scalable data solutions. Synthetic data, which is artificially generated to replicate real-world data without containing identifiable information, has become a critical tool for industries. It enables organizations to train and test AI/ML models extensively while ensuring compliance with privacy and security standards. The ability to generate synthetic data that accurately reflects real-world scenarios without compromising sensitive information has positioned it as a preferred solution for businesses seeking innovation within regulatory frameworks.

Key Highlights

  • The implementation of stringent data privacy regulations, such as the General Data Protection Regulation (GDPR) in Europe, the California Consumer Privacy Act (CCPA) in the United States, and other global data protection laws, has amplified the demand for synthetic data. Organizations are increasingly leveraging synthetic data not only to comply with these regulations but also to capitalize on analytics and AI/ML advancements. These regulatory measures have created a challenging landscape for data-driven enterprises, making synthetic data an essential component of modern data strategies. By enabling compliance while fostering innovation, synthetic data is becoming indispensable for businesses navigating complex regulatory environments.
  • The growing emphasis on data privacy and compliance is driving significant growth in the synthetic data market. Synthetic data, which is artificially generated to replicate the statistical properties of real-world data, offers organizations a privacy-focused solution.
  • Synthetic data, with its potential for limitless generation, is reshaping industries. While real-world data can be costly and challenging to amass, synthetic data offers a virtually boundless alternative. This abundance proves invaluable for training AI and machine learning models, where vast datasets are essential for precision.
  • Gathering real datasets often demands significant resources, from user surveys to accessing proprietary databases. Synthetic data streamlines this process, providing a budget-friendly method to emulate real-world situations. In fields like autonomous driving or fraud detection, modeling rare yet pivotal events is essential. Synthetic data empowers companies to craft data representing these edge cases, enhancing testing and readiness.
  • Despite its promising growth, the synthetic data market grapples with significant hurdles, primarily stemming from technical challenges and quality control issues.
  • Crafting synthetic data that faithfully replicates real-world data is a daunting task. It demands cutting-edge algorithms and profound expertise in both machine learning and statistical modeling. Even minor inaccuracies during generation can result in datasets that lack reliability.
  • Rapid economic expansion in regions such as North America, Europe, and Asia Pacific is driving significant investments in artificial intelligence (AI) and machine learning (ML) technologies, thereby accelerating the demand for synthetic data solutions. For instance, the International Monetary Fund estimates that North America's GDP will reach USD 34.61 trillion by 2025, reflecting an approximate growth of 2.1% during 2024-25. This growth indicates a favorable environment for corporate activities and potential investments in the global synthetic data market.

Synthetic Data Market Trends

BFSI to be the Largest End User Vertical

  • Synthetic data is increasingly critical in the Banking, Financial Services, and Insurance (BFSI) sector, addressing key challenges and creating new opportunities. The BFSI sector handles highly sensitive customer information, including financial transactions and personal data. According to ENISA, From July 2023 to June 2024, Europe’s financial sector faced nearly 2,000 cyber incidents. Synthetic data enhances privacy by replacing real data with artificial yet realistic datasets, helping organizations comply with regulations such as GDPR and CCPA.
  • By generating synthetic financial transactions, organizations can refine their models while ensuring the protection of sensitive customer information. This approach not only enhances the precision of financial models but also ensures adherence to data privacy regulations, positioning synthetic data as an essential resource for financial institutions striving for innovation and compliance.
  • Financial institutions utilize synthetic data to simulate fraudulent activities and rare risk scenarios. This enables them to train AI models for fraud detection, anti-money laundering (AML), and risk assessment. Additionally, in areas where real-world data is limited, such as rare financial events or new product launches, synthetic data bridges the gap by providing diverse datasets for analysis and model training.
  • Synthetic data also allows BFSI organizations to test and develop systems, such as customer relationship management (CRM) tools or financial algorithms, without incurring the high costs of real-world data collection. For example, HSBC has explored synthetic data to enhance fraud detection and ensure compliance with data privacy regulations.
  • BBVA, a player in corporate and investment banking, has embraced synthetic data to facilitate secure data sharing and team collaboration, all while upholding customer privacy. In a prior initiative, BBVA's AI Factory teamed up with startup Dedomena to delve into synthetic data's potential for artificial intelligence advancement. Dedomena, the significant startup, is set to engineer a technological solution that amplifies synthetic data development. Their innovation will substitute real data during AI model testing, ensuring user privacy remains intact.

Asia Pacific to Register Significant Growth

  • The Asia Pacific region is experiencing a substantial digital transformation, with governments and enterprises making significant investments in AI, the Internet of Things (IoT), cloud computing, and big data analytics. Synthetic data is serving a pivotal role in facilitating these technologies by delivering high-quality, scalable datasets for the training and testing of AI models.
  • China is spearheading the synthetic data market in the Asia-Pacific (APAC) region, fueled by advancements in artificial intelligence, machine learning, and generative AI technologies. By 2030, the nation aims to lead the global AI sector, with an estimated annual economic contribution of approximately USD 600 billion.
  • In 2024, China hosted over 4,500 artificial intelligence firms, accounting for 15% of the global total, and gained recognition with the introduction of the DeepSeek AI tool. Models like DeepSeek-R1 harness synthetic data through reinforcement learning and rejection sampling to enhance reasoning abilities, particularly in mathematics and coding, where accurate validation is crucial.
  • Amid the growing adoption of artificial intelligence across the APAC region, governments are introducing regulations to address synthetic data usage. In July 2024, the Personal Data Protection Commission of Singapore (PDPC) published its Proposed Guide on Synthetic Data Generation. This document, forming a crucial part of the Privacy Enhancing Technology (PET) Sandbox, aims to guide organizations in comprehending the methodologies and practical applications of Synthetic Data (SD) generation, particularly within the AI landscape.
  • The rising demand for synthetic data in India is driving startups to invest heavily in artificial intelligence solutions. For instance, Indika AI Private Limited, based in Mumbai, is developing a platform to produce synthetic data for sectors such as finance, healthcare, and legal services. Additionally, multinational corporations like Meta Platforms, Inc., through initiatives like the Llama 3.1 program, are supporting Indian startups in advancing synthetic data generation technologies.

Synthetic Data Industry Overview

The market is predominantly led by key players such as MOSTLY AI, Synthesis AI, Tonic.ai, and Hazy, resulting in intensified competition. These companies have established themselves as leaders by consistently innovating and delivering advanced synthetic data solutions, creating a highly competitive environment. Their dominance is further reinforced by their ability to address diverse industry requirements, spanning sectors such as healthcare, finance, retail, and telecommunications.

Organizations are making significant investments in generative Artificial Intelligence (AI), deep learning algorithms, and privacy-enhancing technologies (PETs) to secure a competitive advantage. These technologies are essential in meeting the increasing demand for secure and scalable synthetic data solutions, enabling compliance with stringent regulatory standards while preserving data utility. The emphasis on these advanced technologies reflects the industry's dedication to innovation and the development of state-of-the-art solutions.

The rising demand for customized synthetic data solutions and cloud-based platforms is driving heightened price competition and differentiation in service offerings. Companies are increasingly tailoring their solutions to meet specific client needs, leading to a surge in the adoption of cloud-based platforms due to their scalability and cost-efficiency. This trend is compelling market participants to innovate continuously and differentiate their offerings to sustain a competitive edge.

The presence of numerous competitors and the continuous demand for innovation contribute to the intensification of market competition. The dynamic nature of the market, characterized by rapid technological advancements and evolving customer expectations, necessitates ongoing innovation and strategic planning. Companies that fail to adapt to these changes risk losing their competitive position, further highlighting the critical role of innovation in maintaining market leadership.

Overall, the intensity of competitive rivalry among the vendors is expected to be high over the forecast period.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support


1 INTRODUCTION
1.1 Study Assumptions and Market Definition
1.2 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET INSIGHTS
4.1 Market Overview
4.2 Industry Attractiveness - Porter's Five Forces Analysis
4.2.1 Bargaining Power of Suppliers
4.2.2 Bargaining Power of Buyers
4.2.3 Threat of New Entrants
4.2.4 Threat of Substitutes
4.2.5 Intensity of Competitive Rivalry
5 MARKET DYNAMICS
5.1 Market Drivers
5.1.1 Increasing Demand for Data Privacy and Compliance
5.1.2 Unlimited Data Generation and Bias Reducton
5.2 Market Restraints
5.2.1 Technical Challenges and Quality Control
6 MARKET SEGMENTATION
6.1 By Data Type
6.1.1 Tabular
6.1.2 Text
6.1.3 Image and Video
6.1.4 Other Data Type
6.2 By Offering
6.2.1 Fully Synthetic
6.2.2 Partially Synthetic
6.3 By Application
6.3.1 Data Sharing
6.3.2 AI/ML Training and Development
6.3.3 Test Data
6.3.4 Other Applications
6.4 By End User Vertical
6.4.1 BFSI
6.4.2 Healthcare
6.4.3 Retail and E-commerce
6.4.4 Automotive and Transportation
6.4.5 Government & Defense
6.4.6 IT and ITeS
6.4.7 Industrial & Robotics
6.4.8 Other End User Verticals
6.5 By Geography***
6.5.1 North America
6.5.2 Europe
6.5.3 Asia
6.5.4 Australia and New Zealand
6.5.5 Latin America
6.5.6 Middle East and Africa
7 COMPETITIVE LANDSCAPE
7.1 Company Profiles
7.1.1 MOSTLY AI Solutions MP GmbH
7.1.2 NVIDIA Corporation
7.1.3 Meta Platforms, Inc.
7.1.4 CVEDIA PTE. LTD.
7.1.5 Amazon.com, Inc.
7.1.6 International Business Machines Corporation
7.1.7 Microsoft Corporation
7.1.8 Gretel Labs
7.1.9 Synthesis AI.
7.1.10 GenRocket, Inc.
8 INVESTMENT ANALYSIS
9 FUTURE OUTLOOK OF THE MARKET

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings