Big Data Analytics In Banking Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)

Big Data Analytics In Banking Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)

Big Data Analytics in the Banking market is expected to register a CAGR of 22.97% during the forecast period. With the outbreak of COVID-19, huge losses in the financial markets of up to USD 744 billion were recorded in March 2020. Investor sentiments at present are at an all-time low, and it is also becoming a difficult task for banks worldwide to maintain good assets and earnings. Due to the shutdowns across various regions and income slowdown, many repayments of loans, especially in Europe, may cease leaving the banks dry, which could slow down the existing banks from incorporating Big Data Analytics into their system.

Key Highlights
  • The major drivers for adopting Big Data analytics in the banking sector are the significant growth in the amount of data generated and governmental regulations. As technology advances, the number of devices consumers use to initiate transactions is also proliferating (such as smartphones), increasing the number of transactions. This rapid growth in data requires better acquisition, organization, integration, and analysis.
  • The banking sector is witnessing significant data generation and governmental regulations. As technology advances, the number of devices that consumers use to initiate transactions is also increasing (such as smartphones), increasing the number of transactions. This drives using Big Data Analytics that, offers a single place for data analysts to view and easily find all data points. This consolidated view enables team members to share insights that can improve the banking sector.
  • A Big Data Analytics solution allows a company to store all of its data in a cost-effective, elastic environment while also delivering the processing, persistence, and analytic capabilities required to discover new business insights. A Big Data Analytics tool stores and curates structured and unstructured data and ways for organizing massive amounts of extremely different data from many sources.
  • The rise of global cloud deployment in the BFSI industry is driven by a shift in preference toward the cloud, an increase in digital disruptions, and technological advances such as the integration of edge computing, the internet of things (IoT), and artificial intelligence. However, the COVID-19 pandemic caused a surge in cloud deployment in the BFSI market, owing to increased demand for greater computing power among banks and the fintech sector. The rise in cloud deployment in BFSI will further drive the need for Big Data Analytics.
  • The 2021 edition, based on nationally representative surveys of over 125,000 adults in 123 economies during the COVID-19 pandemic, includes updated data on access to and usage of official and informal financial services and digital payments and insights into the behaviours that enable economic resilience. The data reveal disparities in access to and utilization of financial services by women and poor adults. Such instances drive the growth of Big Data Analytics in the Banking Market.
  • Furthermore, By 2021, 76% of adults worldwide will have a bank, other financial institution, or mobile money provider account, up from 68% in 2017 and 51% in 2011.
  • Adoption of the big data analytics Banking market is aided by the rising number of digital users. For instance, In 2021, Bank of America said over 2 million active digital clients were added, a single-year record, bringing its total number of verified digital users to more than 54 million by February 2022. The bank's clients accessed its digital platforms a record 10.5 billion times in 2021, a 15% rise year on year.
  • Following the pandemic, personalization and customer experience have grown in importance. With the shift to mobile, nearly 89% of clients prefer mobile banking channels, and digital-only institutions outperform traditional banks. Unlike conventional financial institutions, fintech startups rely on technology and data analytics to meet the needs of their customers.
Key Market TrendsEnforcement of Government Initiatives Acts as a Key Driver
  • Banking and financial services operate under a heavy regulatory framework, requiring effective monitoring and reporting levels. Credit Suisse, a Swiss multinational investment bank and financial services company, uses Big Data to gain insights from various bank records and manage regulatory compliance requirements.
  • In October 2021, The Saudi Central Bank's decision to increase the NFC transaction limit from USD 26.6 to USD 80 and enable payment through smart devices, as well as the National Anti-Concealment program's decision urging all commercial activities to install POS terminals, were two key initiatives that paved the way for the rapid adoption of contactless payments in Saudi Arabia.
  • Other Big Data applications in this industry include customer segmentation and experience analysis, credit risk assessment, and targeted services. Banks like BNY Mellon, Morgan Stanley, Bank of America, Credit Suisse, and PNC are already working on strategies around Big Data in Banking, and other banks are rapidly catching up.
  • Globally, governments are undertaking major reforms in the sector to ensure compliance and security of interests. The financial systems and allied products are becoming more complex and creating a way for fraudsters. To save banks from fraud and risk, governments lay reforms to identify and prevent evolving and complex fraud schemes.
Europe to Expected to Witness Significant Growth
  • Considering the regional analysis of government regulations, the government's approach in every region varies in intensity. The European banks are taking more robust regulatory strategies than their Asian counterparts. For instance, in Europe, regulations have been significant catalysts for the rise of open banking. These include Europe's implementation of its Second Payment Services Directive (PSD2) and the UK Competition and Markets Authority's (CMA) Open Banking regulation.
  • Danske Bank is the largest bank in Denmark, with a customer base of more than 5 million. It utilizes its in-house advanced analytics to identify fraud while reducing false positives. Thus, after implementing a modern enterprise analytics solution, the bank realized a 60% reduction in false positives, which increased true positives by 50%.
  • Open Banking Expo stated on July 2021, According to a survey of 250 senior decision-makers conducted by the London-based technology company Yobota, 74% of banks and financial institutions prioritize improving the quality of their core technology systems, 73% plan to invest in better data analytics to enable more informed decisions, and 67% will invest in application programming interfaces (APIs), followed by 65% in payment technologies.
  • The growing number of cyber threats also influences the need for big data analytics. According to the 2021 United Kingdom Finance Report, criminals stole GBP 754 million (USD 1.03 billion) through bank frauds in the first half of this year, up 30% from the same period in 2020. In addition, the increase in the cyber threats on banks during the pandemic has made it imperative for organizations to adopt big data analytics fraud detection and management.
  • German consumers are increasingly using their mobile devices for internet banking. About 40% of them have a banking app on their mobile phones, and one-fifth of them also use their apps for mobile payment services (Eurostat estimates). The trend of "open banking" in European retail banks is causing them to adopt Big Data analytics solutions, which combat issues traditional financial institutions have faced for decades. Several regional banks are already using Big Data analytics to deliver compelling use cases.
  • E-commerce adoption is an added advantage to Big Data Analytics in the Banking sector as they are getting more data from the E-commerce sites in this region, which increases the opportunities for Big Data Analytics in Banking Market.
  • For instance, E-commerce in the region is proliferating at a high rate owing to the increasing number of online shoppers over the past few years. As per EUROSTAT, the proportion of individuals aged between 16 to 74 in the European Union who ordered or brought goods and services over the internet was 51% in 2016, which grew to 66% in 2021.
  • However, according to Commerzbank, Big Data analytics adoption lags in some parts of Europe. More substantial infrastructure investments, wider adoption of public cloud, and 5G deployment are required to stay competitive and relevant in global markets. This can be considered an opportunity and a risk.
Competitive Landscape

Big Data Analytics In Banking Market is quite fragmented due to the presence of many international players that offer a variety of big data analytics solutions for banks for various applications, including fraud detection and management, customer analytics, social media analytics, etc. Some of the key players in the market are SAP SE, IBM Corporation, and Oracle Corporation.

  • September 2021 - Deutsche Bank announced the acquisition of Berlin-based payment service provider Better Payment. Deutsche Bank will integrate Better Payment's technical solutions into its existing product range over the next twelve months, leveraging the acquisition to expand its market share in payment processing and acceptance.
  • May 2021 - ThetaRay, a prominent player in Big Data analytics, raised USD 31 million from Jerusalem Venture Partners (JVP) and global VC Benhamou Global Ventures. The company intends to use the capital to expand further into the financial market with a cloud-based version of its products and make them available to any organization that deals in cross-border payments. The company plans on targeting the increase in cross-border money transfers due to the pandemic.
Additional Benefits:
  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support
Please note: This publisher does offer titles that are created upon receipt of order. If you are purchasing a PDF Email Delivery option above, the report will take approximately 2 business days to prepare and deliver.


1 INTRODUCTION
1.1 Study Assumptions & Market Definition
1.2 Scope of the Study
2 RESEARCH METHODOLOGY
3 EXECUTIVE SUMMARY
4 MARKET INSIGHTS
4.1 Market Overview
4.2 Industry Attractiveness - Porter's Five Force Analysis
4.2.1 Threat of New Entrants
4.2.2 Bargaining Power of Buyers/Consumers
4.2.3 Bargaining Power of Suppliers
4.2.4 Threat of Substitute Products
4.2.5 Intensity of Competitive Rivalry
4.3 Industry Value Chain Analysis
4.4 Impact of COVID-19 on the Market
5 MARKET DYNAMICS
5.1 Market Drivers
5.1.1 Enforcement of Government Initiatives
5.1.2 Increasing Volume of Data Generated by Banks
5.2 Market Challenges
5.2.1 Lack of Data Privacy and Security
6 RELEVANT CASE STUDIES AND USE CASES
7 MARKET SEGMENTATION
7.1 Solution Type
7.1.1 Data Discovery and Visualization (DDV)
7.1.2 Advanced Analytics (AA)
7.2 Geography
7.2.1 North America
7.2.2 Europe
7.2.3 Asia Pacific
7.2.4 Latin America
7.2.5 Middle East and Africa
8 COMPETITIVE LANDSCAPE
8.1 Company Profiles
8.1.1 IBM Corporation
8.1.2 SAP SE
8.1.3 Oracle Corporation
8.1.4 Aspire Systems Inc.
8.1.5 Adobe Systems Incorporated
8.1.6 Alteryx Inc.
8.1.7 Microstrategy Inc.
8.1.8 Mayato GmbH
8.1.9 Mastercard Inc.
8.1.10 ThetaRay Ltd
9 INVESTMENT ANALYSIS
10 FUTURE OF THE MARKET
11 ABOUT US
11.1 Industries Covered
11.2 Illustrative List of Clients
11.3 Our Customized Research Capabilities

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings