Big Data in Telecom Analytics Market Outlook and Forecasts 2022 – 2030

Big Data in Telecom Analytics Market Outlook and Forecasts 2022 – 2030

This report assesses the correlation between global structured and unstructured data in conjunction with the telecom analytics market. The report also studies the business applications, vendor landscape, value chain analysis, case studies, and a quantitative assessment of the industry during 2022 to 2030.

Select Report Findings:

North America will lead the big data in telecom analytics market
Data management platforms will represent the highest revenue segment
Big data in telecom analytics market poised to reach $21.12 billion by 2030
IoT support in business specific application will grow at 23.1% CAGR during the period
Big data opens a vast array of applications and opportunities in multiple industry verticals
Big data enables multiple benefits for telecom companies including improvement of subscriber experience, maintaining of smarter networks, reducing churn ratio, and generation of new revenue streams

Big data tools help communications service providers gain deeper insights into customer behavior, including usage patterns, preferences, and interests. While hard to derive quick and meaningful insights, big data solutions provide carrier insights into relationships, family, work patterns and location. This is increasingly achieved in real-time using both structured and unstructured data.
The term big data refers to a massive volume of both structured and unstructured data that is so large that it is difficult to process using traditional database and software techniques. While the presence of such datasets is not something new, the past few years have witnessed immense commercial investments in solutions that address the processing and analysis of big data.

Big data opens a vast array of applications and opportunities in multiple vertical sectors including not limited to retail and hospitality, media, utilities, financial services, healthcare and pharmaceutical, government and homeland security and the emerging industrial internet vertical. With access to vast amounts of datasets, telecom companies are also turning out to be major proponents of the big data movement. Big data technologies offer a multitude of benefits to network operators which include improving subscriber experience, building and maintaining smarter networks, reducing churn and even the generation of new revenue streams.

Big data and analytics have emerged as a potential source of revenue for telecom operators, at a time when carriers have been feeling the pressure to generate new sources of revenue. One of those sources comes from their ability to mine the huge amount of data they generate or have access to in both their customer base and their networks. The two have emerged as the tools to help analyze and manage this information. There are now many analytical and intelligence tools that enable mobile operators to understand customer and network behavior.
Communications service providers have a rich stream of data, especially those that offer telephony, TV and Internet services, the triple play operators. The many sources of data are an advantage for telecom companies, but if they want to monetize that data and derive meaningful, actionable analytics it could be challenging due to the complexities of correlation, prediction, and the massive volumes of data from different sources.

Big data helps telecom providers to get deeper insights into customer behavior, their service usage patterns, preferences, and interests. While hard to derive quick and meaningful insights, big data gives telecom companies an idea of relationships, family, work patterns and accurate location data among others. The publisher of this report believes that this will optimally be performed in real-time using both structured and unstructured data.

Prior to leveraging big data analytics solutions, communications service provider ‘raw data’ represents unprocessed and uncategorized content that flows across the network, and ‘meta-data’, which is the data describing the properties, sources, costs, etc. relating to the content. In terms of data types, carrier data can be divided into two broad categories as structured and unstructured data. The blending of the two provide particularly helpful insights in terms of network and service optimization, cost reduction, and generation of new insights and information.

Companies in Report:

Accenture
Amazon
Apache Software Foundation
APTEAN
Cisco Systems
Cloudera
Dell EMC
ElectrifAI
Facebook
GoodData Corporation
Google (Alphabet)
Guavus (Thales Group)
Hitachi Data Systems
Hortonworks
HPE
IBM
Informatica
Intel
Jaspersoft (TIBCO)
Microsoft
MongoDB
MU Sigma
Netapp
Oracle
Pentaho
Platfora (Workday)
Qliktech
Rackspace Technology
Revolution Analytics (Microsoft)
Salesforce
SAP
SAS Institute
Sisense
Splunk
Sqrrl Data
Supermicro
Tableau Software
Teradata
Tidemark (Insight Software)
VMware


1.0 Executive Summary
2.0 Introduction
2.1 Defining Big Data
2.2 Key Characteristics of Big Data
2.2.1 Volume
2.2.2 Variety
2.2.3 Velocity
2.2.4 Variability
2.2.5 Complexity
2.3 Capturing Data through Detection and Social Systems
2.3.1 Data in Social Systems
2.3.2 Detection and Sensors
2.3.3 Sensors in the Consumer Sector
2.3.4 Sensors in Industry
2.4 Structured vs. Unstructured Data
2.4.1 Structured Database Services in Telecom
2.4.2 Unstructured Data from Apps and Databases in Telecom
2.4.3 Emerging Hybrid (Structured/Unstructured) Database Services
2.5 Business Drivers Analysis
2.5.1 Continued Growth of Mobile Broadband
2.5.2 Competition from New Types of Service Providers
2.5.3 New Technology Investment
2.5.4 Need for New KPIs
2.5.5 Artificial Intelligence and Machine Learning
2.6 Market Barriers
2.6.1 Privacy and Security: The ‘Big’ Barrier
2.6.2 Workforce Re-skilling and Organizational Resistance
2.6.3 Lack of Clear Big Data Strategies
2.6.4 Technical Challenges: Scalability and Maintenance
2.7 The Big Data Value Chain
2.7.1 Fragmentation in the Big Data Value Chain
2.7.2 Data Acquisitioning and Provisioning
2.7.3 Data Warehousing and Business Intelligence
2.7.4 Analytics and Virtualization
2.7.5 Actioning and Business Process Management (BPM)
2.7.6 Data Governance
3.0 Technology and Application Analysis
3.1 Big Data Technology
3.1.1 Hadoop
3.1.1.1 MapReduce
3.1.1.2 HDFS
3.1.1.3 Other Apache Projects
3.1.2 NoSQL
3.1.2.1 Hbase
3.1.2.2 Cassandra
3.1.2.3 Mongo DB
3.1.2.4 Riak
3.1.2.5 CouchDB
3.1.3 MPP Databases
3.1.4 Others and Emerging Technologies
3.1.4.1 Storm
3.1.4.2 Drill
3.1.4.3 Dremel
3.1.4.4 SAP HANA
3.1.4.5 Gremlin & Giraph
3.2 Structured Data in Telecom Analytics
3.2.1 Telecom Data Sources and Repositories
3.2.1.1 Subscriber Data
3.2.1.2 Subscriber Presence and Location Data
3.2.1.3 Business Data: Toll-free and other Directory Services
3.2.1.4 Network Data: Deriving Data from Network Operations
3.2.2 Telecom Data Mining
3.2.2.1 Data Sources: Rating, Charging, and Billing Examples
3.2.2.2 Privacy Issues
3.2.3 Telecom Database Services
3.2.3.1 Calling Name Identity
3.2.3.2 Subscriber Data Management (SDM) Services
3.2.3.3 Other Data-intensive Service Areas
3.2.3.4 Emerging Service Area: Identity Verification
3.2.4 Structured Telecom Data Analytics
3.2.4.1 Dealing with Telecom Data Fragmentation
3.2.4.2 Deep Packet Inspection
3.3 Key Big Data Investment Sectors
3.3.1 Industrial Internet and M2M
3.3.1.1 Big Data in M2M
3.3.1.2 Vertical Opportunities
3.3.2 Retail and Hospitality
3.3.2.1 Improving Accuracy of Forecasts and Stock Management
3.3.2.2 Determining Buying Patterns
3.3.2.3 Hospitality Use Cases
3.3.3 Media
3.3.3.1 Social Media
3.3.3.2 Social Gaming Analytics
3.3.3.3 Usage of Social Media Analytics by Other Verticals
3.3.4 Utilities
3.3.4.1 Analysis of Operational Data
3.3.4.2 Application Areas for the Future
3.3.5 Financial Services
3.3.5.1 Fraud Analysis & Risk Profiling
3.3.5.2 Merchant-Funded Reward Programs
3.3.5.3 Customer Segmentation
3.3.5.4 Insurance Companies
3.3.6 Healthcare and Pharmaceutical
3.3.6.1 Drug Development
3.3.6.2 Medical Data Analytics
3.3.6.3 Case Study: Identifying Heartbeat Patterns
3.3.7 Telecom Companies
3.3.7.1 Telcom Analytics: Customer/Usage Profiling and Service Optimization
3.3.7.2 Speech Analytics
3.3.7.3 Other Use Cases
3.3.8 Government and Homeland Security
3.3.8.1 Developing New Applications for the Public
3.3.8.2 Tracking Crime
3.3.8.3 Intelligence Gathering
3.3.8.4 Fraud Detection and Revenue Generation
3.3.9 Other Sectors
3.3.9.1 Aviation: Air Traffic Control
3.3.9.2 Transportation and Logistics: Optimizing Fleet Usage
3.3.9.3 Sports: Real-Time Processing of Statistics
3.4 Big Data Impact in Telecom Analytics
3.4.1 Improving Subscriber Experience
3.4.1.1 Generating a Full Spectrum View of the Subscriber
3.4.1.2 Creating Customized Experiences and Targeted Promotions
3.4.1.3 Central Big Data Repository: Key to Customer Satisfaction
3.4.1.4 Reduce Costs and Increase Market Share
3.4.2 Building Smarter Networks
3.4.2.1 Understanding Network Utilization
3.4.2.2 Improving Network Quality and Coverage
3.4.2.3 Combining Telecom Data with Public Data Sets: Real-Time Event Management
3.4.2.4 Leveraging M2M for Telecom Analytics
3.4.2.5 M2M, Deep Packet Inspection and Big Data: Identifying & Fixing Network Defects
3.4.3 Churn/Risk Reduction and New Revenue Streams
3.4.3.1 Predictive Analytics
3.4.3.2 Identifying Fraud and Bandwidth Theft
3.4.3.3 Creating New Revenue Streams
3.4.4 Telecom Analytics Case Studies
3.4.4.1 T-Mobile USA: Churn Reduction by 50%
3.4.4.2 Vodafone: Using Telco Analytics to Enable Navigation
3.4.5 Carriers, Analytics, and Data as a Service (DaaS)
3.4.5.1 Carrier Data Management Operational Strategies
3.4.5.2 Network vs. Subscriber Analytics
3.4.5.3 Data and Analytics Opportunities to Third Parties
3.4.5.4 Carriers to offer Data as s Service (DaaS) on B2B Basis
3.4.5.5 DaaS Planning and Strategies
3.4.5.6 Carrier Monetization of Data with DaaS
3.4.6 Opportunities for Carriers in Cloud Analytics
3.4.6.1 Carrier NFV and Cloud Analytics
3.4.6.2 Carrier Cloud OSS/BSS Analytics
3.4.6.3 Carrier Cloud Services, Data, and Analytics
3.4.6.4 Carrier Performance Management and the Cloud Analytics
4.0 Company Analysis
4.1 Vendor Assessment Matrix
4.2 Apache Software Foundation
4.3 Accenture
4.4 Amazon
4.5 APTEAN (Formerly CDC Software)
4.6 Cisco Systems
4.7 Cloudera
4.8 Dell EMC
4.9 Facebook
4.10 GoodData Corporation
4.11 Google (Alphabet)
4.12 Guavus (Thales Group)
4.13 Hitachi Data Systems
4.14 Hortonworks
4.15 HPE
4.16 IBM
4.17 Informatica
4.18 Intel
4.19 Jaspersoft (TIBCO)
4.20 Microsoft
4.21 MongoDB (Formerly 10Gen)
4.22 MU Sigma
4.23 Netapp
4.24 ElectrifAI (formerly Opera Solutions)
4.25 Oracle
4.26 Pentaho
4.27 Platfora (Workday)
4.28 Qliktech
4.29 Rackspace Technology
4.30 Revolution Analytics (Microsoft)
4.31 Salesforce
4.32 SAP
4.33 SAS Institute
4.34 Sisense
4.35 Splunk
4.36 Sqrrl Data
4.37 Supermicro
4.38 Tableau Software
4.39 Teradata
4.40 Tidemark (Insight Software)
4.41 VMware
5.0 Market Analysis and Forecasts 2022 – 2030
5.1 Global Big Data in Telecom Analytics Market
5.2 Global Big Data in Telecom Analytics Market by Product and Service
5.2.1 Global Big Data in Telecom Analytics Market by Data Management Platform Type
5.2.1.1 Global Big Data in Telecom Analytics Market by Compute Platform Type
5.2.1.1.1 Global Big Data Compute Platform in Telecom Analytics Market by Cloud Computing Type
5.2.1.2 Global Big Data in Telecom Analytics Market by Storage Type
5.2.1.2.1 Global Big Data Storage in Telecom Analytics Market by Cloud Computing Type
5.2.1.3 Global Big Data in Telecom Analytics Service Market by Analytics Function Type
5.2.1.3.1 Global Big Data in Telecom Analytics Service Market by Network Data Analytics Function Type
5.2.1.4 Global Big Data in Telecom Analytics Market by Application Type
5.2.1.4.1 Global Big Data in Telecom Analytics Market by Business Specific Application Type
5.2.1.4.1.1 Global Big Data in Telecom Analytics Market by IoT Support Sector (Consumer, Enterprise, Industrial, Government) Type
5.2.2 Global Big Data in Telecom Analytics Market by Services Type
5.2.2.1 Global Big Data in Telecom Analytics Market by Professional Services Type
5.2.2.2 Global Big Data in Telecom Analytics Market by Managed Services Type
5.3 Global Big Data Virtualization Platform in Telecom Analytics Market
5.3.1 Global Big Data Virtualization Platform in Telecom Analytics Market by Deployment
5.4 Global Big Data in Telecom Analytics Market by Regions
5.4.1 North America Big Data in Telecom Analytics Market by Country
5.4.2 APAC Big Data in Telecom Analytics Market by Country
5.4.3 Europe Big Data in Telecom Analytics Market by Country
5.4.4 Latin America Big Data in Telecom Analytics Market by Country
5.4.5 MEA Big Data in Telecom Analytics Market by Country
6.0 Conclusions and Recommendations
6.1 Advertisers and Media Companies
6.2 Artificial Intelligence Providers
6.3 Automotive Companies
6.4 Broadband Infrastructure Providers
6.5 Communication Service Providers
6.6 Computing Companies
6.7 Data Analytics Providers
6.8 Immersive Technology (AR, VR, and MR) Providers
6.9 Networking Equipment Providers
6.10 Networking Security Providers
6.11 Semiconductor Companies
6.12 IoT Suppliers and Service Providers
6.13 Software Providers
6.14 Smart City System Integrators
6.15 Automation System Providers
6.16 Social Media Companies
6.17 Enterprise and Government
Figures
Figure 1: Big Data Components
Figure 2: Big Data Sources
Figure 3: Capturing Data from Detection Systems and Sensors
Figure 4: Capturing Data across Sectors
Figure 5: Hybrid Data in Next Generation Applications
Figure 6: AI Structure
Figure 7: The Big Data Value Chain
Figure 8: Presence-enabled Application
Figure 9: Calling Name Service Operation
Figure 10: Subscriber Data Management Ecosystem
Figure 11: Data Fragmented across Telecom Databases
Figure 12: Different Data Types within Telco Environment
Figure 13: Global Big Data in Telecom Analytics Market 2022 – 2030
Figure 14: Global Big Data in Telecom Analytics Market by Product and Service 2022 – 2030
Figure 15: Global Big Data in Telecom Analytics Market by Data Management Platform Type 2022 – 2030
Figure 16: Global Big Data in Telecom Analytics Market by Compute Platform Type 2022 – 2030
Figure 17: Global Big Data Compute Platform in Telecom Analytics Market by Cloud Computing Type 2022 – 2030
Figure 18: Global Big Data in Telecom Analytics Market by Storage Type 2022 – 2030
Figure 19: Global Big Data Storage in Telecom Analytics Market by Cloud Computing Type 2022 – 2030
Figure 20: Global Big Data in Telecom Analytics Service Market by Analytics Function Type 2022 – 2030
Figure 21: Global Big Data in Telecom Analytics Service Market by Network Data Analytics Function Type 2022 – 2030
Figure 22: Global Big Data in Telecom Analytics Market by Application Type 2022 – 2030
Figure 23: Global Big Data in Telecom Analytics Market by Business Specific Application Type 2022 – 2030
Figure 24: Global Big Data in Telecom Analytics Market by IoT Support Sector (Consumer, Enterprise, Industrial, Government) Type 2022 – 2030
Figure 25: Global Big Data in Telecom Analytics Market by Services Type 2022 – 2030
Figure 26: Global Big Data in Telecom Analytics Market by Professional Services Type 2022 – 2030
Figure 27: Global Big Data in Telecom Analytics Market by Managed Services Type 2022 – 2030
Figure 28: Global Big Data Virtualization Platform in Telecom Analytics Market 2022 – 2030
Figure 29: Global Big Data Virtualization Platform in Telecom Analytics Market by Deployment 2022 – 2030
Figure 30: Global Big Data in Telecom Analytics Market by Regions 2022 – 2030
Figure 31: North America Big Data in Telecom Analytics Market by Country 2022 – 2030
Figure 32: APAC Big Data in Telecom Analytics Market by Country 2022 – 2030
Figure 33: Europe Big Data in Telecom Analytics Market by Country 2022 – 2030
Figure 34: Latin America Big Data in Telecom Analytics Market by Country 2022 – 2030
Figure 35: MEA Big Data in Telecom Analytics Market by Country 2022 – 2030
Tables
Table 1: Big Data Vendor Ranking Matrix
Table 2: Global Big Data in Telecom Analytics Market 2022 – 2030
Table 3: Global Big Data in Telecom Analytics Market by Product and Service 2022 – 2030
Table 4: Global Big Data in Telecom Analytics Market by Data Management Platform Type 2022 – 2030
Table 5: Global Big Data in Telecom Analytics Market by Compute Platform Type 2022 – 2030
Table 6: Global Big Data Compute Platform in Telecom Analytics Market by Cloud Computing Type 2022 – 2030
Table 7: Global Big Data in Telecom Analytics Market by Storage Type 2022 – 2030
Table 8: Global Big Data Storage in Telecom Analytics Market by Cloud Computing Type 2022 – 2030
Table 9: Global Big Data in Telecom Analytics Service Market by Analytics Function Type 2022 – 2030
Table 10: Global Big Data in Telecom Analytics Service Market by Network Data Analytics Function Type 2022 – 2030
Table 11: Global Big Data in Telecom Analytics Market by Application Type 2022 – 2030
Table 12: Global Big Data in Telecom Analytics Market by Business Specific Application Type 2022 – 2030
Table 13: Global Big Data in Telecom Analytics Market by IoT Support Sector (Consumer, Enterprise, Industrial, Government) Type 2022 – 2030
Table 14: Global Big Data in Telecom Analytics Market by Services Type 2022 – 2030
Table 15: Global Big Data in Telecom Analytics Market by Professional Services Type 2022 – 2030
Table 16: Global Big Data in Telecom Analytics Market by Managed Services Type 2022 – 2030
Table 17: Global Big Data Virtualization Platform in Telecom Analytics Market 2022 – 2030
Table 18: Global Big Data Virtualization Platform in Telecom Analytics Market by Deployment 2022 – 2030
Table 19: Global Big Data in Telecom Analytics Market by Regions 2022 – 2030
Table 20: North America Big Data in Telecom Analytics Market by Country 2022 – 2030
Table 21: APAC Big Data in Telecom Analytics Market by Country 2022 – 2030
Table 22: Europe Big Data in Telecom Analytics Market by Country 2022 – 2030
Table 23: Latin America Big Data in Telecom Analytics Market by Country 2022 – 2030
Table 24: MEA Big Data in Telecom Analytics Market by Country 2022 - 2030

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings