Multimodal Al Market by Offering (Solutions & Services), Data Modality (Image, Audio), Technology (ML, NLP, Computer Vision, Context Awareness, IoT), Type (Generative, Translative, Explanatory, Interactive), Vertical and Region - Global Forecast to 2028
The global multimodal AI market is valued at USD 1.0 billion in 2023 and is estimated to reach USD 4.5 billion by 2028, registering a CAGR of 35.0% during the forecast period. In today's data-driven world, an abundance of information is generated in unstructured formats such as text, images, and videos. This wealth of data is often rich in insights and valuable content, but its unstructured nature makes it challenging to process, analyze, and extract meaningful information using traditional analytics methods. Multimodal AI steps in as a transformative solution, allowing organizations to harness the riches concealed within unstructured data sources. With the capability to process and interpret information from videos, images, and text, multimodal AI surpasses the limitations of single-modal AI approaches, which are often confined to analyzing structured data or a single data type. This driver underscores the essential role of multimodal AI in addressing the increasing complexity of data analysis requirements in the digital age.
By solutions, the platform segment is projected to hold the largest market size during the forecast period
Multimodal AI solutions in the form of platforms represent comprehensive systems designed to handle and process diverse types of data simultaneously, including text, images, audio, and video. These platforms typically incorporate a range of advanced technologies such as machine learning, deep learning, and natural language processing to enable a holistic understanding of multimodal information. In practical terms, a multimodal AI platform allows users to develop, deploy, and manage AI models capable of handling multiple data modalities in a unified manner. These platforms empower organizations to build intelligent systems that can interpret and respond to complex, real-world scenarios by integrating insights from different data sources.
By data modality, Video Data segment is registered to grow at the highest CAGR during the forecast period
Video data consists of a sequence of frames, each containing visual content, and is a critical modality in multimodal AI applications. Video data allows AI systems to interpret dynamic scenes, track objects, recognize patterns, and understand temporal relationships, making it valuable in various domains such as surveillance, healthcare, and entertainment. The growing prevalence of video content on the internet, the increasing adoption of surveillance and monitoring systems, and the demand for more sophisticated video analytics in industries like retail and manufacturing drives the utilization of video data in multimodal AI.
Asia Pacific is projected to witness the highest CAGR during the forecast period.
The Asia Pacific region emerges as a vibrant hub of economic prowess and technological progress, forecasted to contribute a substantial 70% of global growth in 2023, surpassing other regions. With over half of the world's population residing in this region, any technological shifts, particularly those driven by AI, are anticipated to significantly influence its future trajectory. Several Asian countries, including China, India, Japan, and others, are actively embracing information-intensive AI technologies, with conversational AI leading the technological forefront. Nations like China, Japan, South Korea, India, and Singapore are making substantial investments in artificial intelligence, positioning the APAC region as the fastest-growing AI market globally.
Breakdown of primaries
In-depth interviews were conducted with Chief Executive Officers (CEOs), innovation and technology directors, system integrators, and executives from various key organizations operating in the multimodal AI market.
By Company: Tier I: 35%, Tier II: 45%, and Tier III: 20%
By Designation: C-Level Executives: 35%, Directors: 25%, and Others: 40%
By Region: North America: 45%, Europe: 20%, Asia Pacific: 30%, RoW: 5%
Major vendors offering multimodal AI and services across the globe are Google (US), Microsoft (US), OpenAI (US), Meta (US), AWS (US), IBM (US), Twelve Labs (US), Aimesoft (US), Jina AI (Germany), Uniphore (US), Reka AI (US), Runway (US), Jiva.ai (UK), Vidrovr (US), Mobius Labs (US), Newsbridge (France), OpenStream.ai (US), Habana Labs (US), Modality.AI (US), Perceiv AI (Canada), Multimodal (US), Neuraptic AI (Spain), Inworld AI (US), Aiberry (US), One AI (US), Beewant (France), Owlbot.AI (US), Hoppr (US), Archetype AI (US), Stability AI (England).
Research Coverage
The market study covers multimodal AI across segments. It aims at estimating the market size and the growth potential across different segments, such as offering, data modality, technology, type, vertical, and region. It includes an in-depth competitive analysis of the key players in the market, along with their company profiles, key observations related to product and business offerings, recent developments, and key market strategies.
Key Benefits of Buying the Report
The report would provide the market leaders/new entrants in this market with information on the closest approximations of the revenue numbers for the overall market for multimodal AI and its subsegments. It would help stakeholders understand the competitive landscape and gain more insights better to position their business and plan suitable go-to-market strategies. It also helps stakeholders understand the pulse of the market and provides them with information on key market drivers, restraints, challenges, and opportunities.
The report provides insights on the following pointers:
Analysis of key drivers (The need to analyze unstructured data in multiple formats drives the multimodal AI market, The ability of multimodal AI to handle complex tasks and provide a holistic approach to problem-solving, Generative AI techniques to accelerate multimodal ecosystem development and The availability of large-scale machine learning models that support multimodality.), restraints (Susceptibility to bias in multimodal models and Processing and training multi-modal AI models demand extensive computational resources), opportunities (Rising demand for customized and industry-specific solutions, Enhanced adaptability to unseen data types propels multimodal AI forward, Data Management Services to empowering multimodal AI advancements), and challenges (Teaching AI to grasp nuance and context-dependent meanings poses complex linguistic challenges, Optimal data fusion presents complex challenges in multimodal AI integration, Limitations in transferability pose challenges for multimodal AI adaptation to diverse data types) influencing the growth of the multimodal AI market
Product Development/Innovation: Detailed insights on upcoming technologies, research & development activities, and new product & service launches in the multimodal AI market.
Market Development: Comprehensive information about lucrative markets – the report analyses the multimodal AI market across varied regions.
Market Diversification: Exhaustive information about new products & services, untapped geographies, recent developments, and investments in multimodal AI market strategies; the report also helps stakeholders understand the pulse of the multimodal AI market and provides them with information on key market drivers, restraints, challenges, and opportunities.
Competitive Assessment: In-depth assessment of market shares, growth strategies and service offerings of leading players such as Google (US), Microsoft (US), OpenAI (US), AWS (US), Meta (US) among others in the multimodal AI market.