Global Synthetic Data Software Market Research Report 2023-Competitive Analysis, Status and Outlook by Type, Downstream Industry, and Geography, Forecast to 2029
Synthetic data software allows users to create artificial datasets, such as images, text, or structured data based on an initial dataset or data source. Synthetic data software lets users produce data from scratch that protects privacy-sensitive data, whilst maintaining the patterns and relationships inherent in the original dataset. Techniques for producing this synthetic data include computer-generated imagery (CGI), generative neural networks (GANs), and heuristics. Synthetic data can be a useful way for companies to build datasets in a more efficient and effective manner for the purposes of testing, machine learning model training, data validation, and more.
Market Overview:
The latest research study on the global Synthetic Data Software market finds that the global Synthetic Data Software market reached a value of USD 155.14 million in 2022. It’s expected that the market will achieve USD 323.16 million by 2028, exhibiting a CAGR of 13.01% during the forecast period.
Market Drivers
Data privacy laws and the sensitivity surrounding data sharing make it difficult to access and use subject-level data. Synthetic datasets provide a realistic alternative to describe the characteristics of subject-level data without revealing protected information, because it is never based on real people or real events. This allows them to be shared and used freely without causing privacy issues, thereby providing information for the development of new products, services and intellectual property rights.
Provide synthetic data generated from tabular data. It mimics real data stored in tables and can be used for behavior, forecasting or transaction analysis. Most vendors in this category provide some kind of privacy guarantee, which means that the mechanisms in the synthetic data are designed to prevent re-identification of individuals from the original data. Personal privacy is highly valued, which has also increased the popularity of synthetic data.
It is often difficult for companies to obtain large amounts of data to train accurate models within a given time frame. Manually labeling data is an expensive and slow method of obtaining data. However, generating and using synthetic data can help data scientists and companies overcome these obstacles, and it reduces the need to capture data from real-world events. Therefore, compared to data sets that rely on data sets, the speed of generating data and building data sets is much faster, and developing reliable machine learning models in a faster way. Thereby breaking the silos and innovation barriers. Enables users' data teams to focus on their work and extract value from complex structured data sets.
Region Overview:
North America had the highest growth rate of all regions.
Company Overview:
AI.Reverie, MOSTLY AI, CA Technologies, MDClone and DataGen are the five key players in the global Synthetic Data Software market. These companies have shown consistent growth in revenue, larger volumes of sales and a prominent presence in terms of share in the global Synthetic Data Software market in the past 5 years.
AI.Reverie, Inc. operates as a software development company. AI.Reverie creates the data required to produce computer vision AI efficiently, accurately and without bias.The Company provides proprietary simulation platform that allows businesses across different industries to train their machine learning algorithms and improve their AI applications.
MOSTLY AI is a Vienna, Austria based high-tech startup that has developed game-changing AI technology for synthetic data.
The Synthetic Data Engine by Mostly AI allows to simulate realistic & representative synthetic data at scale, by automatically learning patterns, structure and variation from existing data. It leverages state-of-the-art generative deep neural networks with in-built privacy mechanism to retain the valuable information while rendering the re-identification of any individual impossible. This way it provides as-good-as-real, yet fully anonymous data, that can be freely processed, analyzed and shared further.
Segmentation Overview:
By type, Cloud-Based segment accounted for the largest share of market in 2021.
Application Overview:
By application, the BFSI segment occupied the biggest share from 2017 to 2022.
Key Companies in the global Synthetic Data Software market covered in Chapter 3:
MDClone
GenRocket
CA Technologies
YData
LexSet
Kinetic Vision
Synthesis AI
Neuromation
Statice
AI.Reverie
MOSTLY AI
DataGen
Tonic
Informatica
Hazy
ANYVERSE
In Chapter 4 and Chapter 14.2, on the basis of types, the Synthetic Data Software market from 2018 to 2029 is primarily split into:
Cloud-Based
On-Premises
In Chapter 5 and Chapter 14.3, on the basis of Downstream Industry, the Synthetic Data Software market from 2018 to 2029 covers:
Retail
Healthcare
IT & Telecom
BFSI
Others
Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2018-2029) of the following regions are covered in Chapter 8 to Chapter 14:
North America (United States, Canada)
Europe (Germany, UK, France, Italy, Spain, Russia, Netherlands, Turkey, Switzerland, Sweden)
Asia Pacific (China, Japan, South Korea, Australia, India, Indonesia, Philippines, Malaysia)
Latin America (Brazil, Mexico, Argentina)
Middle East & Africa (Saudi Arabia, UAE, Egypt, South Africa)
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook