Global Model-Based Systems Engineering (MBSE) Solution Market Research Report 2023-Competitive Analysis, Status and Outlook by Type, Downstream Industry, and Geography, Forecast to 2029
MBSE is the application of modeling systems, a hardware engineering methodology. MBSE uses graphical models to represent and construct systems to support requirements, design, analysis, and verification related to the development of complex systems. With the increasing adoption of digital modeling environments, MBSE is gaining popularity in the engineering community for its ability to improve communication, collaboration, and efficiency in the design process. Industries such as aerospace, automotive, construction, and telecommunications often need to design large, complex systems where multiple engineering disciplines need to work together to design, build, and maintain them. These systems can benefit from MBSE's holistic, collaborative, and efficient approach.
Market Overview:The latest research study on the global Model-Based Systems Engineering (MBSE) Solution market finds that the global Model-Based Systems Engineering (MBSE) Solution market reached a value of USD 812.32 million in 2022. It’s expected that the market will achieve USD 1553.1 million by 2028, exhibiting a CAGR of 11.41% during the forecast period.
Benefits of MBSE
MBSE is a computer model of a system with many benefits. Traditional systems engineering often involves a series of lengthy and complex system documentation, and it can be difficult to keep up to date as the design evolves. MBSE focuses on expressing and documenting requirements, design, analysis, and verification information using model-centric modeling tools and data sources. SysML is an important tool for MBSE. A system model is a real-time representation of a system or product that can unite all information about the system. It allows every project participant to be accessible and easily updated and modified as requirements change. MBSE provides a common language for interdisciplinary communication, improving collective understanding of system requirements, design, and behavior, leading to better outcomes and fewer misunderstandings. Drones, for example, require the collaboration of multiple engineering disciplines, including mechanical, electrical, software, and aerodynamics. MBSE simplifies the job of describing multiple documents, allowing engineers to focus on improving the product. MBS allows simulated behavior and full traceability from requirements to verified solutions, which enables engineers to consider the entire system lifecycle, not just individual components or subsystems. This helps engineers make better decisions as early as possible in the design lifecycle, reducing the cost of error correction. In practice, engineers use models to gain knowledge and as guidelines for system implementation, e.g. electrical CAD, and mechanical CAD. With virtual models, engineers can simulate various scenarios and test different design options without the costs associated with building physical prototypes. Additionally, MBSE provides a single source of truth for inspection and verification by enabling a rigorous systems engineering approach. It contains all the data and design information needed to keep engineers on the same page, ensuring internal consistency of the model, and thereby improving product lead times, yields, and profits. Models can be documented for different stakeholders. Engineering firms using MBSE can improve customer satisfaction by producing higher-quality designs more efficiently. Overall, MBSE is essential for engineering companies. Industries such as aerospace, defense, automotive, energy, and medical devices often need to design complex systems, and MBSE can lead to a more efficient, effective, and innovative design process.
Increased demand for MBSE in automotive industry
Electronics in the automotive industry evolve very rapidly and the complexity of the vehicle development process increases dramatically. This is due to the increasing proportion of complex advanced software and cutting-edge electronics in vehicles, and the interdisciplinary knowledge required to support their functionality. For example, an automatic cruise control system relies on the integration of software, electronic hardware, mechanical systems, and other engineering and technical fields. Modern electric vehicles are built around a powerful central computer with artificial intelligence capabilities to support autonomous driving and connectivity with automakers and other vehicles. The major challenges facing the automotive industry today are the increasing demand for personalized products and rich experiences, rising quality standards, and decreasing operating costs. Engineering teams need to be able to manage the simultaneous development of mechanical, electrical, and software systems to successfully deliver competitive, high-quality vehicles on time. Software modeling and simulation tools enhance automotive embedded system design, faster time to release, and higher reliability. Automakers are increasingly adopting Model-Based Design to develop automotive electronics, including transmissions, engine controllers, body controllers, battery modules, and more. This increases the automotive industry's reliance on MBSE.
For example, IBM Engineering Lifecycle Management is one of the leading application lifecycle management solutions for managing the development of today's complex cars. Argonne and VMS developed AMBER, whose extensive use of metadata information enabled the development and deployment of specialized workflows throughout the MBSE process. These include automatically building Simulink system models from individual systems and subsystems, simulating one to millions of individual vehicles to assess energy impacts; assessing the impact of connected and automated vehicle controls; and quantifying the impact of people and freight. With the increase in environmental regulations in various countries and consumers' preference for electric vehicles, electrification is becoming the new standard. Under the trend of vehicle electrification, automakers are busy developing new electric vehicles and researching more high-tech functions of vehicles. The complexity of automotive production processes and the associated data and information management creates a need for higher levels of transparency, agility, and compliance. With shorter development cycles across the automotive sector, all manufacturers are accelerating their pace of innovation, increasing the demand for MBSE solutions.
Disadvantages of MBSE
MBSE also has some disadvantages. Like all other models, MBSE has an underlying framework. If something goes wrong with the foundation, the entire system is affected, but correcting the framework often requires canceling or restarting the entire project. Since MBSE is a relatively new concept and has a certain level of complexity, it requires the user to have a good understanding of how the model works. It may be easy for people inside the organization to use, but it may be difficult for someone outside to understand and review it. For large complex systems, validating MBSE models can be difficult, requiring additional effort and resources to ensure model accuracy and completeness. Due to the difficult learning process of MBSE, not everyone can use it from the beginning. Many people are reluctant to adapt to new ways of working. At the same time, MBSE is costly to implement and maintain. This requires stakeholders to support a purpose-built system that is well-maintained, staffed with experts, and kept abreast of industry changes. MBSE still lacks standardization, which can lead to confusion and lack of consistency as different organizations use different methodologies. Some experts believe that MBSE may lead to excessive reliance on models, with a lack of focus on real-world considerations. This can lead to impractical designs. Additionally, SysML is often used in conjunction with MBSE to represent and design systems, but SysML has some limitations, including complexity, limited hardware design support, and possible incompatibility with other tools. Therefore, these disadvantages of MBSE hinder the rapid development of the industry.
Region Overview:In 2022, the share of the Model-Based Systems Engineering (MBSE) Solution market in North America stood at 41.65%.
Company Overview:The major players operating in the Model-Based Systems Engineering (MBSE) Solution market include Dassault Systèmes, Siemens, PTC, AWS, IBM Corporation, etc. Among which, Dassault Systèmes ranked top in terms of sales and revenue in 2023.
Dassault Systèmes
As a leader in 3DEXPERIENCE solutions for clients around the world, Dassault Systèmes provides businesses and clients with a virtual space to simulate sustainable innovation. Its world-leading solutions transform the way products are designed, produced, and supported. Collaboration solutions from Dassault Systèmes drive social innovation, expanding the possibilities for virtual worlds to improve the real world.
Siemens
Siemens Digital Industries Software and Siemens Xcelerator are transforming the everyday by giving companies like yours the agility, flexibility, and adaptability to turn ideas into innovation with greater efficiency and speed.
Segmentation Overview:By type, Service segment accounted for the largest share of market in 2022.
Application Overview:By application, the Aerospace and Defense segment occupied the biggest share from 2018 to 2022.
Key Companies in the global Model-Based Systems Engineering (MBSE) Solution market covered in Chapter 3:Saratech
MathWorks
Precise Systems
PTC
Zuken
Dassault Systèmes
Safran
Avion Solutions
Siemens
IBM Corporation
ANSYS
AWS
In Chapter 4 and Chapter 14.2, on the basis of types, the Model-Based Systems Engineering (MBSE) Solution market from 2018 to 2029 is primarily split into:Software
Service
In Chapter 5 and Chapter 14.3, on the basis of Downstream Industry, the Model-Based Systems Engineering (MBSE) Solution market from 2018 to 2029 covers:Aerospace and Defense
Automotive and Heavy Equipment
Machine Manufacturing
Energy and Utilities
Others
Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2018-2029) of the following regions are covered in Chapter 8 to Chapter 14:North America (United States, Canada)
Europe (Germany, UK, France, Italy, Spain, Russia, Netherlands, Turkey, Switzerland, Sweden)
Asia Pacific (China, Japan, South Korea, Australia, India, Indonesia, Philippines, Malaysia)
Latin America (Brazil, Mexico, Argentina)
Middle East & Africa (Saudi Arabia, UAE, Egypt, South Africa)