Global Deepfake Software Market Research Report 2023-Competitive Analysis, Status and Outlook by Type, Downstream Industry, and Geography, Forecast to 2029

Global Deepfake Software Market Research Report 2023-Competitive Analysis, Status and Outlook by Type, Downstream Industry, and Geography, Forecast to 2029


A portmanteau of deep learning and fake, Deepfake are videos or images processed through artificial intelligence, techniques that include digital software, machine learning, and facial recognition. Deepfakes replace features on one image with those on another, making it incredibly easy to create highly deceptive visual and audio content. Common uses of Deepfake include creating celebrity videos, fake news, hoaxes, and financial fraud.

Market Overview:

The latest research study on the global Deepfake Software market finds that the global Deepfake Software market reached a value of USD 54.32 million in 2022. It’s expected that the market will achieve USD 348.9 million by 2028, exhibiting a CAGR of 36.34% during the forecast period.

The growth of the sex economy

According to estimates, the global porn industry is worth approximately $97 billion, with revenues of $14 billion in the United States. Porn-related content accounts for 35% and 25% of Internet downloads and search engine requests, respectively. Porn sites have seen an average 25-40% increase in revenue due to the COVID-19 pandemic. While Deepfake appears in a range of apps, they're used more often in the porn industry than any other. According to research from Sensity AI, which has been tracking online Deepfake videos since December 2018, 90% to 95% are non-consensual pornography and 90% are non-consensual pornography of women. Both adult movie stars and non-celebrity faces (ex-wives, ex-girlfriends, crushes, etc.) are prevalent on porn sites due to the ease of sharing and re-uploading. Alteration and sharing of sex worker content by pirate sites have become standard practice, and Deepfake has benefited from the resulting complacency about porn theft. Additionally, some creators pride themselves on pornographic Deepfake as a type of fan fiction or media remix. Deepfake software for creating pornographic videos is becoming more sophisticated and widespread, and many are free or offer free trials. Because Deepfake can be produced and published online anywhere, law enforcement and regulators are limited by jurisdiction. Webmasters often don't specifically choose which ads to run on their sites. Because of the way targeted advertising works online, porn sites serving ads to people who have shown interest in Deepfake porn can create a feedback loop that leads to more ads for Deepfake porn. So, as the porn economy continues to grow, does its need for Deepfake.

An increase in downstream demand

Deepfake is an image and sound synthesis technology based on artificial intelligence. In most cases, Deepfake uses generative adversarial neural networks (GANs) to create such content. Deepfake can be applied in the following industries. Teachers can use Deepfake to help teach more interesting lessons beyond the limitations of traditional visual and media mediums. Fake movies re-enacted using sources from historical figures increase student engagement and make the learning process more efficient and effective. Businesses use Deepfake to train employees. Virtual tutors teach in a variety of languages and can personally address each employee by name. Deepfakes can make expensive VFX technology more accessible, which in turn can evolve into a powerful tool for independent storytellers. An AI system can generate an entire scene with actors without having to bring them into a live shoot. In post-production, re-recordings and dialogue replacements can be done without actor involvement. Using Deepfake to turn sketches into actual images, designers use the generated architectural images to create levels in games faster. Audio narration and book narration are more applications of synthesized speech. An audio version of this book can be produced using the author's artificial voice font. In political expression, activists and journalists can use Deepfake to disguise their voices and appearances to remain anonymous. People can use Deepfake to create personal digital avatars for self-expression and online social interaction. Helping people become more autonomous and broaden their goals, ideologies, and perspectives by reducing gender, age, appearance, and race distinctions. Using Deepfake, brands can provide customers with more relevant information and experiences based on personal preferences. Deepfake and digital mockups are becoming a new fashion and brand marketing trend. In the field of public safety, Deepfake can help reconstruct crime scenes. By utilizing surveillance video and autopsy results, Deepfake constructs a virtual crime scene after deductive and inductive reasoning. Deepfake could create new possibilities for the healthcare industry. On the one hand, it allows medical researchers to develop new treatments for diseases without testing them on human patients. On the other side of the spectrum is holographic medicine, where in areas where there is a shortage of medical professionals, it may be more helpful for local doctors to review symptoms alongside those in technologically advanced areas. All in all, the wide application of Deepfake provides a balanced solution to many practical problems. As a result, new concepts and capabilities have emerged in industries such as public safety, accessibility, art, and business, and the downstream demand for Deepfake continues to increase.

Risks of Deepfake technology

Despite their potential benefits, Deepfake also raises serious concerns about their use. The most obvious impact of deepfake technology is that it can be used to create fake videos, so it becomes more difficult to determine the authenticity of a piece of content. This may lead to a lack of trust or ethical concerns. One of the biggest problems with deepfakes is that they can be used to spread disinformation and manipulate public opinion. For example, deepfake videos can be used to spread false rumors or manipulate people into believing politicians have done things they never actually did. Deepfakes can be used to create false evidence in court cases, which could undermine the integrity of the justice system. Deepfakes could undermine trust in surveillance videos, body cameras, and other evidence. The current notable differences are the speed and ease with which visual media can be manipulated, the quality of manipulated images, and the lack of reliable methods for analyzing and verifying potential deepfake media. Deepfakes can also be used to create fake news or propaganda for spreading hate speech or inciting violence. Digital forgery can smear or incite violence against police officers. DHS also identified risks including cyberbullying, blackmail, stock manipulation, and political instability. Another challenge with deepfakes is that they can be used to create fake pornography without the consent of those involved. This could result in serious privacy violations and emotional distress for those affected. Deepfakes are used in everything from politics to performance, but also for blackmail and fraud. Audio deepfakes have been used as part of a scam to make people think they are taking instructions from a trusted individual. Deepfakes can be used to generate ransom material that falsely accuses victims. If a marketer or brand uses deepfake videos, consumers may feel manipulated by the marketing campaign and distrust the brand in the future. Marketers use deepfakes to create fake product reviews that make products more appealing than they are. Deepfake technology could also increase the number of online scams where consumers may make false accusations or complaints against companies. As deepfake technology becomes more widespread, so does the likelihood of being exploited. Deepfakes have the ability to deceive the public, citizens no longer have a common reality, and it is difficult to determine which information sources are reliable. Public trust in democratic institutions may decline as a result. The risk caused by a deepfake may affect the reputation of the industry and hurt market expansion.

Region Overview:

In 2022, the share of the Deepfake Software market in North America stood at 40.38%.

Company Overview:

The major players operating in the Deepfake Software market include FaceApp, DeepSwap, MyHeritage Deep Nostalgia, FaceMagic, Reface, etc. Among which, FaceApp ranked top in terms of sales and revenue in 2023.

FaceApp

FaceApp is one of the most popular iOS/Android photo editing apps that offers a fantastic set of AI filters, backgrounds, effects, and other tools to turn portrait photos into magazine cover pictures in one tap.

DeepSwap

DeepSwap is a subscription-based platform that provides a deepfake solution. It allows users to swap faces in videos with faces they want. It monetizes through a subscription-based model.

Segmentation Overview:

By type, Deepfake Creation segment accounted for the largest share of market in 2022.

Application Overview:

By application, the Mobile segment occupied the biggest share from 2018 to 2022.

Key Companies in the global Deepfake Software market covered in Chapter 3:

FaceMagic
Sensity
Deepware
MyHeritage Deep Nostalgia
Reface
Icons8
Face Swap Live
FaceApp
Deepfakes Web
DeepSwap
Deep Art Effects

In Chapter 4 and Chapter 14.2, on the basis of types, the Deepfake Software market from 2018 to 2029 is primarily split into:

Deepfake Creation
Deepfake Detection

In Chapter 5 and Chapter 14.3, on the basis of Downstream Industry, the Deepfake Software market from 2018 to 2029 covers:

PC
Mobile

Geographically, the detailed analysis of consumption, revenue, market share and growth rate, historic and forecast (2018-2029) of the following regions are covered in Chapter 8 to Chapter 14:

North America (United States, Canada)
Europe (Germany, UK, France, Italy, Spain, Russia, Netherlands, Turkey, Switzerland, Sweden)
Asia Pacific (China, Japan, South Korea, Australia, India, Indonesia, Philippines, Malaysia)
Latin America (Brazil, Mexico, Argentina)
Middle East & Africa (Saudi Arabia, UAE, Egypt, South Africa)


Chapter 1 Market Definition and Statistical Scope
Chapter 2 Research Findings and Conclusion
Chapter 3 Key Companies’ Profile
Chapter 4 Global Deepfake Software Market Segmented by Type
Chapter 5 Global Deepfake Software Market Segmented by Downstream Industry
Chapter 6 Deepfake Software Industry Chain Analysis
Chapter 7 The Development and Dynamics of Deepfake Software Market
Chapter 8 Global Deepfake Software Market Segmented by Geography
Chapter 9 North America
Chapter 10 Europe
Chapter 11 Asia Pacific
Chapter 12 Latin America
Chapter 13 Middle East & Africa
Chapter 14 Global Deepfake Software Market Forecast by Geography, Type, and Downstream Industry 2023-2029
Chapter 15 Appendix

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings