Global Vector Databases for Generative AI Applications Market Growth (Status and Outlook) 2024-2030
Vector databases for generative AI applications refer to specialized data storage systems designed to efficiently handle and retrieve high-dimensional vectors, which are numerical representations of data. In generative AI, such as in models that create text, images, or audio, these vectors represent complex features like semantic meaning, visual patterns, or audio characteristics. Vector databases enable quick similarity searches, allowing AI models to retrieve and compare similar data points, which is crucial for generating accurate and contextually relevant outputs. This capability is essential for scaling AI applications, as it enhances the model's ability to learn from and generate data more effectively.
The global Vector Databases for Generative AI Applications market size is projected to grow from US$ 270 million in 2024 to US$ 596 million in 2030; it is expected to grow at a CAGR of 14.1% from 2024 to 2030.
LPI (LP Information)' newest research report, the “Vector Databases for Generative AI Applications Industry Forecast” looks at past sales and reviews total world Vector Databases for Generative AI Applications sales in 2022, providing a comprehensive analysis by region and market sector of projected Vector Databases for Generative AI Applications sales for 2023 through 2029. With Vector Databases for Generative AI Applications sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Vector Databases for Generative AI Applications industry.
This Insight Report provides a comprehensive analysis of the global Vector Databases for Generative AI Applications landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyses the strategies of leading global companies with a focus on Vector Databases for Generative AI Applications portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Vector Databases for Generative AI Applications market.
This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Vector Databases for Generative AI Applications and breaks down the forecast by Type, by Application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Vector Databases for Generative AI Applications.
United States market for Vector Databases for Generative AI Applications is estimated to increase from US$ million in 2023 to US$ million by 2030, at a CAGR of % from 2024 through 2030.
China market for Vector Databases for Generative AI Applications is estimated to increase from US$ million in 2023 to US$ million by 2030, at a CAGR of % from 2024 through 2030.
Europe market for Vector Databases for Generative AI Applications is estimated to increase from US$ million in 2023 to US$ million by 2030, at a CAGR of % from 2024 through 2030.
Global key Vector Databases for Generative AI Applications players cover Zilliz Cloud, Redis, Pinecone, Weaviate, Canonical, etc. In terms of revenue, the global two largest companies occupied for a share nearly % in 2023.
This report presents a comprehensive overview, market shares, and growth opportunities of Vector Databases for Generative AI Applications market by product type, application, key players and key regions and countries.
Segmentation by Type:
Memory-Based Vector Databases
Disk-Based Vector Databases
Hybrid Vector Databases
Segmentation by Application:
Natural Language Processing (NLP)
Computer Vision
Search and Information Retrieval
Others
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
Segmentation by Type:
Memory-Based Vector Databases
Disk-Based Vector Databases
Hybrid Vector Databases
Segmentation by Application:
Natural Language Processing (NLP)
Computer Vision
Search and Information Retrieval
Others
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.
Zilliz Cloud
Redis
Pinecone
Weaviate
Canonical
OpenSearch
MongoDB
Elastic
Marqo
Milvus
Snorkel AI
Qdrant
Oracle
Microsoft
AWS
Deep Lake
Fauna
Vespa
Please note: The report will take approximately 2 business days to prepare and deliver.