Global Industrial Predictive Maintenance Market Growth (Status and Outlook) 2023-2029
Predictive maintenance (PdM) techniques are designed to help determine the condition of in-service equipment in order to predict when maintenance should be performed. This approach promises cost savings over routine or time-based preventive maintenance, because tasks are performed only when warranted. The main promise of predictive maintenance is to allow convenient scheduling of corrective maintenance, and to prevent unexpected equipment failures.
LPI (LP Information)' newest research report, the “Industrial Predictive Maintenance Industry Forecast” looks at past sales and reviews total world Industrial Predictive Maintenance sales in 2022, providing a comprehensive analysis by region and market sector of projected Industrial Predictive Maintenance sales for 2023 through 2029. With Industrial Predictive Maintenance sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Industrial Predictive Maintenance industry.
This Insight Report provides a comprehensive analysis of the global Industrial Predictive Maintenance landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyzes the strategies of leading global companies with a focus on Industrial Predictive Maintenance portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Industrial Predictive Maintenance market.
This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Industrial Predictive Maintenance and breaks down the forecast by type, by application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Industrial Predictive Maintenance.
The global Industrial Predictive Maintenance market size is projected to grow from US$ million in 2022 to US$ million in 2029; it is expected to grow at a CAGR of % from 2023 to 2029.
Predictive maintenance evaluates the condition of equipment by performing periodic (offline) or continuous (online) equipment condition monitoring. The ultimate goal of the approach is to perform maintenance at a scheduled point in time when the maintenance activity is most cost-effective and before the equipment loses performance within a threshold. This results in a reduction in unplanned downtime costs because of failure where for instance costs can be in the hundreds of thousands per day depending on industry.
This report presents a comprehensive overview, market shares, and growth opportunities of Industrial Predictive Maintenance market by product type, application, key players and key regions and countries.
Market Segmentation:
Segmentation by type
Cloud-Based
On-premises
Segmentation by application
Government
Aerospace and Defense
Energy and Utilities
Healthcare
Manufacturing
Transportation and Logistics
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.
Augury Systems
Bosch Software Innovations
C3 IoT
Dell Technologies
Fluke Corporation
General Electric
Hitachi
Honeywell
IBM
PTC
Rapidminer
Rockwell Automation
SAP
SAS Institute
Schneider Electric
Senseye
SKF
Software
Softweb Solutions
T-Systems International
Warwick Analytics
Please note: The report will take approximately 2 business days to prepare and deliver.