Global Data De-identification and Pseudonymity Software Market Growth (Status and Outlook) 2024-2030
The most common technique to de-identify data in a dataset is through pseudonymization. Data De-identification and Pseudonymity software replaces personal identifying data in datasets with artificial identifiers, or pseudonyms. Companies choose to de-identify or pseudonymize (also called tokenize) their data to reduce their risk of holding personally identifiable information and comply with privacy and data protection laws such as the CCPA and GDPR.
The global Data De-identification and Pseudonymity Software market size is projected to grow from US$ 1846 million in 2023 to US$ 3139.9 million in 2030; it is expected to grow at a CAGR of 7.9% from 2024 to 2030.
LPI (LP Information)' newest research report, the “Data De-identification and Pseudonymity Software Industry Forecast” looks at past sales and reviews total world Data De-identification and Pseudonymity Software sales in 2023, providing a comprehensive analysis by region and market sector of projected Data De-identification and Pseudonymity Software sales for 2024 through 2030. With Data De-identification and Pseudonymity Software sales broken down by region, market sector and sub-sector, this report provides a detailed analysis in US$ millions of the world Data De-identification and Pseudonymity Software industry.
This Insight Report provides a comprehensive analysis of the global Data De-identification and Pseudonymity Software landscape and highlights key trends related to product segmentation, company formation, revenue, and market share, latest development, and M&A activity. This report also analyzes the strategies of leading global companies with a focus on Data De-identification and Pseudonymity Software portfolios and capabilities, market entry strategies, market positions, and geographic footprints, to better understand these firms’ unique position in an accelerating global Data De-identification and Pseudonymity Software market.
This Insight Report evaluates the key market trends, drivers, and affecting factors shaping the global outlook for Data De-identification and Pseudonymity Software and breaks down the forecast by Type, by Application, geography, and market size to highlight emerging pockets of opportunity. With a transparent methodology based on hundreds of bottom-up qualitative and quantitative market inputs, this study forecast offers a highly nuanced view of the current state and future trajectory in the global Data De-identification and Pseudonymity Software.
The future market trends of Data De-identification and Pseudonymity Software are driven by the increasing demand for data security, the growing adoption of cloud and virtualization technologies, and the rising number of SMEs. Some of the key trends include:
The use of risk-based pseudonymization techniques that consider the utility and scalability of the data while offering protection against unauthorized re-identification.
The integration of Data De-identification and Pseudonymity Software with other data management and analytics tools to enable data-driven decision making and innovation.
The emergence of new applications and use cases of Data De-identification and Pseudonymity Software in various industries such as healthcare, finance, retail, and education.
This report presents a comprehensive overview, market shares, and growth opportunities of Data De-identification and Pseudonymity Software market by product type, application, key players and key regions and countries.
Segmentation by type
Cloud Based
On Premises
Segmentation by application
Large Enterprises
SMEs
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.
Very Good Security
KIProtect
PHEMI Systems
Aircloak
Anonomatic
Precisely
Auric Systems International
AvePoint
Baffle
Anonos
Ekobit
BrighterAi
PlumCloud Labs
PKWARE
Thales Group
D-ID
ARCAD Software
Privacy1
HushHush
IBM
MENTISoftware
Immuta
Imperva
Informatica
Mentis
Please note: The report will take approximately 2 business days to prepare and deliver.