Global Big Data & Machine Learning in Telecom Market Growth (Status and Outlook) 2024-2030
According to our LPI (LP Information) latest study, the global Big Data & Machine Learning in Telecom market size was valued at US$ million in 2023. With growing demand in downstream market, the Big Data & Machine Learning in Telecom is forecast to a readjusted size of US$ million by 2030 with a CAGR of % during review period.
The research report highlights the growth potential of the global Big Data & Machine Learning in Telecom market. Big Data & Machine Learning in Telecom are expected to show stable growth in the future market. However, product differentiation, reducing costs, and supply chain optimization remain crucial for the widespread adoption of Big Data & Machine Learning in Telecom. Market players need to invest in research and development, forge strategic partnerships, and align their offerings with evolving consumer preferences to capitalize on the immense opportunities presented by the Big Data & Machine Learning in Telecom market.
Telecom big data spending includes distributed storage and computing Hadoop (and Spark) clusters, HDFS file systems, SQL and NoSQL software database frameworks, and other operational software. Telecom analytics software, such as for revenue assurance, business intelligence, strategic marketing, and network performance, are considered separately. The evolution from non-machine learning based descriptive analytics to machine learning driven predictive analytics is also considered. Telecom data meets the fundamental 3Vs criteria of big data: velocity, variety, and volume, and should be supported with a big data infrastructure (processing, storage, and analytics) for both real-time and offline analysis.
The Global Mobile Economy Development Report 2023 released by GSMA Intelligence pointed out that by the end of 2022, the number of global mobile users would exceed 5.4 billion. The mobile ecosystem supports 16 million jobs directly and 12 million jobs indirectly.
According to our Communications Research Centre, in 2022, the global communication equipment was valued at US$ 100 billion. The U.S. and China are powerhouses in the manufacture of communications equipment. According to data from the Ministry of Industry and Information Technology of China, the cumulative revenue of telecommunications services in 2022 was ¥1.58 trillion, an increase of 8% over the previous year. The total amount of telecommunications business calculated at the price of the previous year reached ¥1.75 trillion, a year-on-year increase of 21.3%. In the same year, the fixed Internet broadband access business revenue was ¥240.2 billion, an increase of 7.1% over the previous year, and its proportion in the telecommunications business revenue decreased from 15.3% in the previous year to 15.2%, driving the telecommunications business revenue to increase by 1.1 percentage points.
Key Features:
The report on Big Data & Machine Learning in Telecom market reflects various aspects and provide valuable insights into the industry.
Market Size and Growth: The research report provide an overview of the current size and growth of the Big Data & Machine Learning in Telecom market. It may include historical data, market segmentation by Type (e.g., Descriptive Analytics, Predictive Analytics), and regional breakdowns.
Market Drivers and Challenges: The report can identify and analyse the factors driving the growth of the Big Data & Machine Learning in Telecom market, such as government regulations, environmental concerns, technological advancements, and changing consumer preferences. It can also highlight the challenges faced by the industry, including infrastructure limitations, range anxiety, and high upfront costs.
Competitive Landscape: The research report provides analysis of the competitive landscape within the Big Data & Machine Learning in Telecom market. It includes profiles of key players, their market share, strategies, and product offerings. The report can also highlight emerging players and their potential impact on the market.
Technological Developments: The research report can delve into the latest technological developments in the Big Data & Machine Learning in Telecom industry. This include advancements in Big Data & Machine Learning in Telecom technology, Big Data & Machine Learning in Telecom new entrants, Big Data & Machine Learning in Telecom new investment, and other innovations that are shaping the future of Big Data & Machine Learning in Telecom.
Downstream Procumbent Preference: The report can shed light on customer procumbent behaviour and adoption trends in the Big Data & Machine Learning in Telecom market. It includes factors influencing customer ' purchasing decisions, preferences for Big Data & Machine Learning in Telecom product.
Government Policies and Incentives: The research report analyse the impact of government policies and incentives on the Big Data & Machine Learning in Telecom market. This may include an assessment of regulatory frameworks, subsidies, tax incentives, and other measures aimed at promoting Big Data & Machine Learning in Telecom market. The report also evaluates the effectiveness of these policies in driving market growth.
Environmental Impact and Sustainability: The research report assess the environmental impact and sustainability aspects of the Big Data & Machine Learning in Telecom market.
Market Forecasts and Future Outlook: Based on the analysis conducted, the research report provide market forecasts and outlook for the Big Data & Machine Learning in Telecom industry. This includes projections of market size, growth rates, regional trends, and predictions on technological advancements and policy developments.
Recommendations and Opportunities: The report conclude with recommendations for industry stakeholders, policymakers, and investors. It highlights potential opportunities for market players to capitalize on emerging trends, overcome challenges, and contribute to the growth and development of the Big Data & Machine Learning in Telecom market.
Market Segmentation:
Big Data & Machine Learning in Telecom market is split by Type and by Application. For the period 2019-2030, the growth among segments provides accurate calculations and forecasts for consumption value by Type, and by Application in terms of value.
Segmentation by type
Descriptive Analytics
Predictive Analytics
Machine Learning
Feature Engineering
Segmentation by application
Processing
Storage
Analyzing
This report also splits the market by region:
Americas
United States
Canada
Mexico
Brazil
APAC
China
Japan
Korea
Southeast Asia
India
Australia
Europe
Germany
France
UK
Italy
Russia
Middle East & Africa
Egypt
South Africa
Israel
Turkey
GCC Countries
The below companies that are profiled have been selected based on inputs gathered from primary experts and analyzing the company's coverage, product portfolio, its market penetration.
Allot
Argyle data
Ericsson
Guavus
HUAWEI
Intel
NOKIA
Openwave mobility
Procera networks
Qualcomm
ZTE
Google
AT&T
Apple
Amazon
Microsoft
Please note: The report will take approximately 2 business days to prepare and deliver.