Global Graph Database Market Size, Share & Industry Trends Analysis Report By Type, By Vertical, By Component, By Deployment Type, By Organization Size, By Application, By Regional Outlook and Forecast, 2022 - 2028
Description
Global Graph Database Market Size, Share & Industry Trends Analysis Report By Type, By Vertical, By Component, By Deployment Type, By Organization Size, By Application, By Regional Outlook and Forecast, 2022 - 2028
The Global Graph Database Market size is expected to reach $8.1 billion by 2028, rising at a market growth of 22.2% CAGR during the forecast period.
A graph database is a single-purpose, specialized platform for building and manipulating graphs. Another often used word for a graph database is graph analytics, which refers to the process of analyzing data in a graph style with data points acting as relationships and nodes acting as edges. A database that can serve graph formats is required for graph analytics. It can be a specialized graph database or a convergent database that supports several data types, including graphs.
Additionally, a graph database is a database that represents and stores data using graph layouts for semantic queries with edges, nodes, and properties. The graph is an important notion in the system (or relationship or edge). In addition, the graph connects the store's data items to a set of edges and nodes, with the edges indicating the nodes' relationships. The relationship enables data in the storage to be immediately connected and, in many circumstances, retrieved in a single operation. The connections between data are prioritized in graph databases. Because relationships are preserved in the database indefinitely, querying them is easy. Graph databases can easily depict connections and make them helpful for material that is extremely interconnected.
Graph databases are often referred to as NoSQL databases. Graph databases are identical to conventional network model databases and also represent general graphs, however, network-model databases function at a low level of abstraction and dearth of straightforward traversal through a chain of edges. Graph databases have a variety of storing mechanisms. In a graph database, relationships are first-class citizens that can be directed, labeled, and given properties. Several graph databases rely on a SQL engine and use a table to store the graph data. Others store data in a key-value store or a document-oriented database, making them fundamentally NoSQL. However, a table is a logical element, which adds another layer of abstraction among the graph database management system, the graph database, and the physical devices on which the data is stored.
COVID-19 Impact
The COVID-19 outbreak caused a significant downfall to various economies all over the world. The outbreak of the novel coronavirus slowed down numerous businesses globally. In addition, due to the rapid spread of the infection, governments all over the world were forced to impose countrywide lockdowns. Due to the travel restrictions under the lockdown, the supply chain of various goods, as well as intermediate goods, was significantly disrupted. Moreover, the lockdown also caused a considerable hindrance to various manufacturing facilities worldwide. In addition, the COVID–19 outbreak exposed flaws in business models throughout various verticals, it also provided various chances for businesses to expand and digitalize beyond geographies as the use and incorporation of technologies like cloud, analytics, AI, IoT, and blockchain surged throughout the lockdown time.
Market Growth Factors
Rising demand for solutions with the ability to process low-latency queries
Graph database services and tools are widely being utilized all over the world, to the extent that several legacy database providers are attempting to integrate graph database schemas into their prevailing relational database infrastructures. While the strategy might appear to save money in theory, it might actually slow down and degrade the performance of queries run against the database. A graph database is changing traditional brick-and-mortar businesses into digital business powerhouses in terms of digital business activities. Companies face issues when it comes to storing large amounts of connected data in the database that isn't appropriate for the task at hand.
The advent of open knowledge networks
Knowledge networks must have datasets, methods, and documentation to ensure accessibility across applications, support knowledge-intensive applications, and interlink numerous disciplines to create a cross-domain knowledge network. Biometrics, home environment, patient health history, and real-time behavior are all required for applications such as senior patient care and monitoring. In addition to a personalized knowledge graph for healthcare, knowledge networks can interconnect multimodal cross-domain data and information collected from several sources. Certain knowledge graphs in this information network are still proprietary, and use by universities or researchers is usually prohibitively expensive.
Market Restraining Factors
Complex programming and standardization
While graph databases, technically, are NoSQL databases, they must run on a single server in practice because they cannot be distributed across a low-cost cluster. This is what causes a network's performance to rapidly deteriorate. Another potential disadvantage is that developers must write their queries in Java because there is no SQL to retrieve data from graph databases, necessitating the hiring of expensive programmers. Alternatively, developers can use SparcQL or one of the other query languages developed in order to support graph databases, but this would necessitate learning a new skill. As a result, graph database systems suffer from a lack of standardization and programming ease. There are visualization tools for graph databases, although they are still in the early stages of development.
Type Outlook
Based on Type, the market is segmented into Labeled Property Graph and Resource Description Framework. In 2021, the Resource Description Framework segment procured a substantial revenue share of the graph database market. Each update of information is represented by a distinct node in an RDF graph model. In an RDF model, the user must create a separate node that connects to the real person node. An RDF graph model, in particular, is made up of arcs and nodes. A node for the object, a node for the subject, and an arc for the predicate represent an RDF graph notation or a statement. A node can be left blank, be literal, or have a URI associated with it. A URI can also be used to identify an arc. There are two types of literal for nodes viz. plain, or untyped, and typed. A lexical form and, if desired, a language tag is included in a simple literal. A typed literal is a string that contains a URI that defines a certain datatype. When the data does not have a URI, a blank node can be used to appropriately depict the status of the data.
Vertical Outlook
Based on Vertical, the market is segmented into BFSI, Telecom & IT, Manufacturing & Automotive, Retail & Ecommerce, Government & Public Sector, Healthcare & Life Sciences, Media & Entertainment, Energy & Utilities, Travel & Hospitality, Transportation & Logistics, and Others. In 2021, the BFSI segment procured the largest revenue share of the graph database market. The rising growth of this segment is owing to the increasing investments and efforts by various banks to bring digitalization in their processes. Graph database solutions allow executives to effectively respond to their workloads in order to provide enhanced customer experiences. Hence, this factor is accelerating the growth of this segment.
Component Outlook
Based on Component, the market is segmented into Software and Services. In 2021, the services segment garnered a substantial revenue share of the graph database market. These services are critical for the operation of graph database solutions and ensuring a quicker and more efficient implementation that maximizes the value of company investments. Services connected with this type of software are a crucial part of the market, ensuring that graph database solutions are effectively used. The demand for these services is increasing due to a surge in end-user adoption of services, as they assure the smooth operation of the software as well as platforms all through the process.
Deployment Type Outlook
Based on Deployment Type, the market is segmented into On-premise and Cloud. In 2021, the on-premise segment procured the largest revenue share of the graph database market. The growth of this segment is owing to the rising utilization of company-owned devices due to the fact that a dedicated system for the management of graph database solutions on the premises of the company is more reliable in contrast to the cloud-based deployment of these solutions.
Organization Size Outlook
Based on Organization Size, the market is segmented into Large Enterprises, and Small & Medium Enterprises. In 2021, the Small & Medium Enterprises segment witnessed a significant revenue share of the graph database market. The increasing growth of the segment is due to the fact that cloud-based solutions along with services assist SMEs in improving their business performance and efficiency. In addition, small and medium organizations also adopt novel and advanced technologies in order to accelerate their growth. Hence, the growth of this segment would augment in the coming years.
Application Outlook
Based on Application, the market is segmented into Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management, Operations Management & Asset Management, Knowledge Management, Content Management, Data Extraction & Search, Customer Analytics & Recommendation Engines, Infrastructure Management, IoT, Industry 4.0, Scientific Data Management, Metadata & Master Data Management, and Others. In 2021, the fraud detection & prevention segment witnessed the largest revenue share of the graph database market. The growth of the segment is surging due to increasing adoption of graph databases across organizations as a fraud detection tool to protect consumer data, manage risk, and offer the most value to shareholders. One of the most popular tools for detecting fraud, uncovering fraud rings, and identifying sophisticated scams, such as corruption, eCommerce fraud, and money laundering, is the graph database. In addition, Graph databases are used to uncover fraud from huge volumes of data in money laundering and financial crime. They use pattern recognition, categorization, statistical analysis, and machine learning models.
Regional Outlook
Based on Regions, the market is segmented into North America, Europe, Asia Pacific, and Latin America, Middle East & Africa. In 2021, North America accounted for the largest revenue share of the graph database market. Graph database tools along with associated technologies are becoming increasingly popular across North America because enterprises in this region rely heavily on data. Additionally, the advent of technology-based businesses and sectors in this region has offered considerable growth potential for graph database providers. The rising technological improvements in the region are key factors encouraging the growth of the graph database market in North America. Market growth is also estimated to be aided by the rising number of regional market players in the graph database sector.
The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include IBM Corporation, Oracle Corporation, Microsoft Corporation, Amazon Web Services, Inc. (Amazon.com, Inc.), SAP SE, Teradata Corporation, Hewlett Packard Enterprise Company, MarkLogic Corporation, TigerGraph, and OpenLink Software, Inc.
Strategies Deployed in Graph Database Market
Nov-2021: MarkLogic acquired Smartlogic, a metadata management provider. Through this acquisition, the company aimed to accelerate its data management with the addition of a veteran company’s tools into its portfolio.
Oct-2021: Hewlett Packard teamed up with TigerGraph and Xilinx. Following this collaboration, the companies would develop a solution to allow the access of graph analytics capabilities to enterprises in order to expedite insight while reducing resources and costs.
Dec-2020: Teradata unveiled Teradata QueryGrid on its Vantage platform. The new product would increase access to data with wider ecosystem connectivity and allow customers to connect to a variety of novel data sources irrespective of their locations.
Dec-2020: AWS launched the Neptune graph database. The new product would leverage graph neural networks, which is a machine learning technique developed for graphs. Moreover, the new product would enhance the precision of most predictions for graphs.
Jul-2020: TigerGraph rolled out TigerGraph Cloud on Microsoft Azure. The new product would aid enterprises in leveraging the capabilities of the graph. In addition, the new product would offer an ideal cloud-based service to search, model, and traverse relationships for analytical, transactional, and concurrent workloads.
Sep-2019: Oracle introduced upgrades into its Oracle CX. Through this launch, the company aimed to offer contextual and personalized experiences in customer interactions. Moreover, the new version would provide a complete customer intelligence platform for handling all the customer data for B2C and B2B brands.
May-2019: OpenLink Software introduced a new version of Virtuoso. The new version would provide significant innovations in order to streamline data access, virtualization, management, integration, and transformation without stringent confinement to a particular database management system or modality.
Scope of the Study
Market Segments covered in the Report:
By Type
The Global Graph Database Market size is expected to reach $8.1 billion by 2028, rising at a market growth of 22.2% CAGR during the forecast period.
A graph database is a single-purpose, specialized platform for building and manipulating graphs. Another often used word for a graph database is graph analytics, which refers to the process of analyzing data in a graph style with data points acting as relationships and nodes acting as edges. A database that can serve graph formats is required for graph analytics. It can be a specialized graph database or a convergent database that supports several data types, including graphs.
Additionally, a graph database is a database that represents and stores data using graph layouts for semantic queries with edges, nodes, and properties. The graph is an important notion in the system (or relationship or edge). In addition, the graph connects the store's data items to a set of edges and nodes, with the edges indicating the nodes' relationships. The relationship enables data in the storage to be immediately connected and, in many circumstances, retrieved in a single operation. The connections between data are prioritized in graph databases. Because relationships are preserved in the database indefinitely, querying them is easy. Graph databases can easily depict connections and make them helpful for material that is extremely interconnected.
Graph databases are often referred to as NoSQL databases. Graph databases are identical to conventional network model databases and also represent general graphs, however, network-model databases function at a low level of abstraction and dearth of straightforward traversal through a chain of edges. Graph databases have a variety of storing mechanisms. In a graph database, relationships are first-class citizens that can be directed, labeled, and given properties. Several graph databases rely on a SQL engine and use a table to store the graph data. Others store data in a key-value store or a document-oriented database, making them fundamentally NoSQL. However, a table is a logical element, which adds another layer of abstraction among the graph database management system, the graph database, and the physical devices on which the data is stored.
COVID-19 Impact
The COVID-19 outbreak caused a significant downfall to various economies all over the world. The outbreak of the novel coronavirus slowed down numerous businesses globally. In addition, due to the rapid spread of the infection, governments all over the world were forced to impose countrywide lockdowns. Due to the travel restrictions under the lockdown, the supply chain of various goods, as well as intermediate goods, was significantly disrupted. Moreover, the lockdown also caused a considerable hindrance to various manufacturing facilities worldwide. In addition, the COVID–19 outbreak exposed flaws in business models throughout various verticals, it also provided various chances for businesses to expand and digitalize beyond geographies as the use and incorporation of technologies like cloud, analytics, AI, IoT, and blockchain surged throughout the lockdown time.
Market Growth Factors
Rising demand for solutions with the ability to process low-latency queries
Graph database services and tools are widely being utilized all over the world, to the extent that several legacy database providers are attempting to integrate graph database schemas into their prevailing relational database infrastructures. While the strategy might appear to save money in theory, it might actually slow down and degrade the performance of queries run against the database. A graph database is changing traditional brick-and-mortar businesses into digital business powerhouses in terms of digital business activities. Companies face issues when it comes to storing large amounts of connected data in the database that isn't appropriate for the task at hand.
The advent of open knowledge networks
Knowledge networks must have datasets, methods, and documentation to ensure accessibility across applications, support knowledge-intensive applications, and interlink numerous disciplines to create a cross-domain knowledge network. Biometrics, home environment, patient health history, and real-time behavior are all required for applications such as senior patient care and monitoring. In addition to a personalized knowledge graph for healthcare, knowledge networks can interconnect multimodal cross-domain data and information collected from several sources. Certain knowledge graphs in this information network are still proprietary, and use by universities or researchers is usually prohibitively expensive.
Market Restraining Factors
Complex programming and standardization
While graph databases, technically, are NoSQL databases, they must run on a single server in practice because they cannot be distributed across a low-cost cluster. This is what causes a network's performance to rapidly deteriorate. Another potential disadvantage is that developers must write their queries in Java because there is no SQL to retrieve data from graph databases, necessitating the hiring of expensive programmers. Alternatively, developers can use SparcQL or one of the other query languages developed in order to support graph databases, but this would necessitate learning a new skill. As a result, graph database systems suffer from a lack of standardization and programming ease. There are visualization tools for graph databases, although they are still in the early stages of development.
Type Outlook
Based on Type, the market is segmented into Labeled Property Graph and Resource Description Framework. In 2021, the Resource Description Framework segment procured a substantial revenue share of the graph database market. Each update of information is represented by a distinct node in an RDF graph model. In an RDF model, the user must create a separate node that connects to the real person node. An RDF graph model, in particular, is made up of arcs and nodes. A node for the object, a node for the subject, and an arc for the predicate represent an RDF graph notation or a statement. A node can be left blank, be literal, or have a URI associated with it. A URI can also be used to identify an arc. There are two types of literal for nodes viz. plain, or untyped, and typed. A lexical form and, if desired, a language tag is included in a simple literal. A typed literal is a string that contains a URI that defines a certain datatype. When the data does not have a URI, a blank node can be used to appropriately depict the status of the data.
Vertical Outlook
Based on Vertical, the market is segmented into BFSI, Telecom & IT, Manufacturing & Automotive, Retail & Ecommerce, Government & Public Sector, Healthcare & Life Sciences, Media & Entertainment, Energy & Utilities, Travel & Hospitality, Transportation & Logistics, and Others. In 2021, the BFSI segment procured the largest revenue share of the graph database market. The rising growth of this segment is owing to the increasing investments and efforts by various banks to bring digitalization in their processes. Graph database solutions allow executives to effectively respond to their workloads in order to provide enhanced customer experiences. Hence, this factor is accelerating the growth of this segment.
Component Outlook
Based on Component, the market is segmented into Software and Services. In 2021, the services segment garnered a substantial revenue share of the graph database market. These services are critical for the operation of graph database solutions and ensuring a quicker and more efficient implementation that maximizes the value of company investments. Services connected with this type of software are a crucial part of the market, ensuring that graph database solutions are effectively used. The demand for these services is increasing due to a surge in end-user adoption of services, as they assure the smooth operation of the software as well as platforms all through the process.
Deployment Type Outlook
Based on Deployment Type, the market is segmented into On-premise and Cloud. In 2021, the on-premise segment procured the largest revenue share of the graph database market. The growth of this segment is owing to the rising utilization of company-owned devices due to the fact that a dedicated system for the management of graph database solutions on the premises of the company is more reliable in contrast to the cloud-based deployment of these solutions.
Organization Size Outlook
Based on Organization Size, the market is segmented into Large Enterprises, and Small & Medium Enterprises. In 2021, the Small & Medium Enterprises segment witnessed a significant revenue share of the graph database market. The increasing growth of the segment is due to the fact that cloud-based solutions along with services assist SMEs in improving their business performance and efficiency. In addition, small and medium organizations also adopt novel and advanced technologies in order to accelerate their growth. Hence, the growth of this segment would augment in the coming years.
Application Outlook
Based on Application, the market is segmented into Fraud Detection & Prevention, Risk, Compliance & Reporting Management, Supply Chain Management, Operations Management & Asset Management, Knowledge Management, Content Management, Data Extraction & Search, Customer Analytics & Recommendation Engines, Infrastructure Management, IoT, Industry 4.0, Scientific Data Management, Metadata & Master Data Management, and Others. In 2021, the fraud detection & prevention segment witnessed the largest revenue share of the graph database market. The growth of the segment is surging due to increasing adoption of graph databases across organizations as a fraud detection tool to protect consumer data, manage risk, and offer the most value to shareholders. One of the most popular tools for detecting fraud, uncovering fraud rings, and identifying sophisticated scams, such as corruption, eCommerce fraud, and money laundering, is the graph database. In addition, Graph databases are used to uncover fraud from huge volumes of data in money laundering and financial crime. They use pattern recognition, categorization, statistical analysis, and machine learning models.
Regional Outlook
Based on Regions, the market is segmented into North America, Europe, Asia Pacific, and Latin America, Middle East & Africa. In 2021, North America accounted for the largest revenue share of the graph database market. Graph database tools along with associated technologies are becoming increasingly popular across North America because enterprises in this region rely heavily on data. Additionally, the advent of technology-based businesses and sectors in this region has offered considerable growth potential for graph database providers. The rising technological improvements in the region are key factors encouraging the growth of the graph database market in North America. Market growth is also estimated to be aided by the rising number of regional market players in the graph database sector.
The market research report covers the analysis of key stake holders of the market. Key companies profiled in the report include IBM Corporation, Oracle Corporation, Microsoft Corporation, Amazon Web Services, Inc. (Amazon.com, Inc.), SAP SE, Teradata Corporation, Hewlett Packard Enterprise Company, MarkLogic Corporation, TigerGraph, and OpenLink Software, Inc.
Strategies Deployed in Graph Database Market
Nov-2021: MarkLogic acquired Smartlogic, a metadata management provider. Through this acquisition, the company aimed to accelerate its data management with the addition of a veteran company’s tools into its portfolio.
Oct-2021: Hewlett Packard teamed up with TigerGraph and Xilinx. Following this collaboration, the companies would develop a solution to allow the access of graph analytics capabilities to enterprises in order to expedite insight while reducing resources and costs.
Dec-2020: Teradata unveiled Teradata QueryGrid on its Vantage platform. The new product would increase access to data with wider ecosystem connectivity and allow customers to connect to a variety of novel data sources irrespective of their locations.
Dec-2020: AWS launched the Neptune graph database. The new product would leverage graph neural networks, which is a machine learning technique developed for graphs. Moreover, the new product would enhance the precision of most predictions for graphs.
Jul-2020: TigerGraph rolled out TigerGraph Cloud on Microsoft Azure. The new product would aid enterprises in leveraging the capabilities of the graph. In addition, the new product would offer an ideal cloud-based service to search, model, and traverse relationships for analytical, transactional, and concurrent workloads.
Sep-2019: Oracle introduced upgrades into its Oracle CX. Through this launch, the company aimed to offer contextual and personalized experiences in customer interactions. Moreover, the new version would provide a complete customer intelligence platform for handling all the customer data for B2C and B2B brands.
May-2019: OpenLink Software introduced a new version of Virtuoso. The new version would provide significant innovations in order to streamline data access, virtualization, management, integration, and transformation without stringent confinement to a particular database management system or modality.
Scope of the Study
Market Segments covered in the Report:
By Type
- Labeled Property Graph
- Resource Description Framework
- BFSI
- Telecom & IT
- Manufacturing & Automotive
- Retail & Ecommerce
- Government & Public Sector
- Healthcare & Life Sciences
- Media & Entertainment
- Energy & Utilities
- Travel & Hospitality
- Transportation & Logistics
- Others
- Software
- Services
- On-premise
- Cloud
- Large Enterprises
- Small & Medium Enterprises
- Fraud Detection & Prevention
- Risk, Compliance & Reporting Management
- Supply Chain Management, Operations Management & Asset Management
- Knowledge Management, Content Management, Data Extraction & Search
- Customer Analytics & Recommendation Engines
- Infrastructure Management, IoT, Industry 4.0
- Scientific Data Management, Metadata & Master Data Management
- Others
- North America
- US
- Canada
- Mexico
- Rest of North America
- Europe
- Germany
- UK
- France
- Russia
- Spain
- Italy
- Rest of Europe
- Asia Pacific
- China
- Japan
- India
- South Korea
- Singapore
- Malaysia
- Rest of Asia Pacific
- LAMEA
- Brazil
- Argentina
- UAE
- Saudi Arabia
- South Africa
- Nigeria
- Rest of LAMEA
- IBM Corporation
- Oracle Corporation
- Microsoft Corporation
- Amazon Web Services, Inc. (Amazon.com, Inc.)
- SAP SE
- Teradata Corporation
- Hewlett Packard Enterprise Company
- MarkLogic Corporation
- TigerGraph
- OpenLink Software, Inc.
- Exhaustive coverage
- Highest number of market tables and figures
- Subscription based model available
- Guaranteed best price
- Assured post sales research support with 10% customization free
Table of Contents
427 Pages
- Chapter 1. Market Scope & Methodology
- 1.1 Market Definition
- 1.2 Objectives
- 1.3 Market Scope
- 1.4 Segmentation
- 1.4.1 Global Graph Database Market, by Type
- 1.4.2 Global Graph Database Market, by Vertical
- 1.4.3 Global Graph Database Market, by Component
- 1.4.4 Global Graph Database Market, by Deployment Type
- 1.4.5 Global Graph Database Market, by Organization Size
- 1.4.6 Global Graph Database Market, by Application
- 1.4.7 Global Graph Database Market, by Geography
- 1.5 Methodology for the research
- Chapter 2. Market Overview
- 2.1 Introduction
- 2.1.1 Overview
- 2.1.1.1 Market composition and scenario
- 2.2 Key Factors Impacting the Market
- 2.2.1 Market Drivers
- 2.2.2 Market Restraints
- Chapter 3. Strategies Deployed in Graph Database Market
- Chapter 4. Global Graph Database Market by Type
- 4.1 Global Labeled Property Graph Market by Region
- 4.2 Global Resource Description Framework Market by Region
- Chapter 5. Global Graph Database Market by Vertical
- 5.1 Global BFSI Market by Region
- 5.2 Global Telecom & IT Market by Region
- 5.3 Global Manufacturing & Automotive Market by Region
- 5.4 Global Retail & Ecommerce Market by Region
- 5.5 Global Government & Public Sector Market by Region
- 5.6 Global Healthcare & Life Sciences Market by Region
- 5.7 Global Media & Entertainment Market by Region
- 5.8 Global Energy & Utilities Market by Region
- 5.9 Global Travel & Hospitality Market by Region
- 5.1 Global Transportation & Logistics Market by Region
- 5.11 Global Other Vertical Market by Region
- Chapter 6. Global Graph Database Market by Component
- 6.1 Global Software Market by Region
- 6.2 Global Services Market by Region
- Chapter 7. Global Graph Database Market by Deployment Type
- 7.1 Global On-premise Market by Region
- 7.2 Global Cloud Market by Region
- Chapter 8. Global Graph Database Market by Organization Size
- 8.1 Global Large Enterprises Market by Region
- 8.2 Global Small & Medium Enterprises Market by Region
- Chapter 9. Global Graph Database Market by Application
- 9.1 Global Fraud Detection & Prevention Market by Region
- 9.2 Global Risk, Compliance & Reporting Management Market by Region
- 9.3 Global Supply Chain Management, Operations Management & Asset Management Market by Region
- 9.4 Global Knowledge Management, Content Management, Data Extraction & Search Market by Region
- 9.5 Global Customer Analytics & Recommendation Engines Market by Region
- 9.6 Global Infrastructure Management, IoT, Industry 4.0 Market by Region
- 9.7 Global Scientific Data Management, Metadata & Master Data Management Market by Region
- 9.8 Global Others Market by Region
- Chapter 10. Global Graph Database Market by Region
- 10.1 North America Graph Database Market
- 10.1.1 North America Graph Database Market by Type
- 10.1.1.1 North America Labeled Property Graph Market by Country
- 10.1.1.2 North America Resource Description Framework Market by Country
- 10.1.2 North America Graph Database Market by Vertical
- 10.1.2.1 North America BFSI Market by Country
- 10.1.2.2 North America Telecom & IT Market by Country
- 10.1.2.3 North America Manufacturing & Automotive Market by Country
- 10.1.2.4 North America Retail & Ecommerce Market by Country
- 10.1.2.5 North America Government & Public Sector Market by Country
- 10.1.2.6 North America Healthcare & Life Sciences Market by Country
- 10.1.2.7 North America Media & Entertainment Market by Country
- 10.1.2.8 North America Energy & Utilities Market by Country
- 10.1.2.9 North America Travel & Hospitality Market by Country
- 10.1.2.10 North America Transportation & Logistics Market by Country
- 10.1.2.11 North America Other Vertical Market by Country
- 10.1.3 North America Graph Database Market by Component
- 10.1.3.1 North America Software Market by Country
- 10.1.3.2 North America Services Market by Country
- 10.1.4 North America Graph Database Market by Deployment Type
- 10.1.4.1 North America On-premise Market by Country
- 10.1.4.2 North America Cloud Market by Country
- 10.1.5 North America Graph Database Market by Organization Size
- 10.1.5.1 North America Large Enterprises Market by Country
- 10.1.5.2 North America Small & Medium Enterprises Market by Country
- 10.1.6 North America Graph Database Market by Application
- 10.1.6.1 North America Fraud Detection & Prevention Market by Country
- 10.1.6.2 North America Risk, Compliance & Reporting Management Market by Country
- 10.1.6.3 North America Supply Chain Management, Operations Management & Asset Management Market by Country
- 10.1.6.4 North America Knowledge Management, Content Management, Data Extraction & Search Market by Country
- 10.1.6.5 North America Customer Analytics & Recommendation Engines Market by Country
- 10.1.6.6 North America Infrastructure Management, IoT, Industry 4.0 Market by Country
- 10.1.6.7 North America Scientific Data Management, Metadata & Master Data Management Market by Country
- 10.1.6.8 North America Others Market by Country
- 10.1.7 North America Graph Database Market by Country
- 10.1.7.1 US Graph Database Market
- 10.1.7.1.1 US Graph Database Market by Type
- 10.1.7.1.2 US Graph Database Market by Vertical
- 10.1.7.1.3 US Graph Database Market by Component
- 10.1.7.1.4 US Graph Database Market by Deployment Type
- 10.1.7.1.5 US Graph Database Market by Organization Size
- 10.1.7.1.6 US Graph Database Market by Application
- 10.1.7.2 Canada Graph Database Market
- 10.1.7.2.1 Canada Graph Database Market by Type
- 10.1.7.2.2 Canada Graph Database Market by Vertical
- 10.1.7.2.3 Canada Graph Database Market by Component
- 10.1.7.2.4 Canada Graph Database Market by Deployment Type
- 10.1.7.2.5 Canada Graph Database Market by Organization Size
- 10.1.7.2.6 Canada Graph Database Market by Application
- 10.1.7.3 Mexico Graph Database Market
- 10.1.7.3.1 Mexico Graph Database Market by Type
- 10.1.7.3.2 Mexico Graph Database Market by Vertical
- 10.1.7.3.3 Mexico Graph Database Market by Component
- 10.1.7.3.4 Mexico Graph Database Market by Deployment Type
- 10.1.7.3.5 Mexico Graph Database Market by Organization Size
- 10.1.7.3.6 Mexico Graph Database Market by Application
- 10.1.7.4 Rest of North America Graph Database Market
- 10.1.7.4.1 Rest of North America Graph Database Market by Type
- 10.1.7.4.2 Rest of North America Graph Database Market by Vertical
- 10.1.7.4.3 Rest of North America Graph Database Market by Component
- 10.1.7.4.4 Rest of North America Graph Database Market by Deployment Type
- 10.1.7.4.5 Rest of North America Graph Database Market by Organization Size
- 10.1.7.4.6 Rest of North America Graph Database Market by Application
- 10.2 Europe Graph Database Market
- 10.2.1 Europe Graph Database Market by Type
- 10.2.1.1 Europe Labeled Property Graph Market by Country
- 10.2.1.2 Europe Resource Description Framework Market by Country
- 10.2.2 Europe Graph Database Market by Vertical
- 10.2.2.1 Europe BFSI Market by Country
- 10.2.2.2 Europe Telecom & IT Market by Country
- 10.2.2.3 Europe Manufacturing & Automotive Market by Country
- 10.2.2.4 Europe Retail & Ecommerce Market by Country
- 10.2.2.5 Europe Government & Public Sector Market by Country
- 10.2.2.6 Europe Healthcare & Life Sciences Market by Country
- 10.2.2.7 Europe Media & Entertainment Market by Country
- 10.2.2.8 Europe Energy & Utilities Market by Country
- 10.2.2.9 Europe Travel & Hospitality Market by Country
- 10.2.2.10 Europe Transportation & Logistics Market by Country
- 10.2.2.11 Europe Other Vertical Market by Country
- 10.2.3 Europe Graph Database Market by Component
- 10.2.3.1 Europe Software Market by Country
- 10.2.3.2 Europe Services Market by Country
- 10.2.4 Europe Graph Database Market by Deployment Type
- 10.2.4.1 Europe On-premise Market by Country
- 10.2.4.2 Europe Cloud Market by Country
- 10.2.5 Europe Graph Database Market by Organization Size
- 10.2.5.1 Europe Large Enterprises Market by Country
- 10.2.5.2 Europe Small & Medium Enterprises Market by Country
- 10.2.6 Europe Graph Database Market by Application
- 10.2.6.1 Europe Fraud Detection & Prevention Market by Country
- 10.2.6.2 Europe Risk, Compliance & Reporting Management Market by Country
- 10.2.6.3 Europe Supply Chain Management, Operations Management & Asset Management Market by Country
- 10.2.6.4 Europe Knowledge Management, Content Management, Data Extraction & Search Market by Country
- 10.2.6.5 Europe Customer Analytics & Recommendation Engines Market by Country
- 10.2.6.6 Europe Infrastructure Management, IoT, Industry 4.0 Market by Country
- 10.2.6.7 Europe Scientific Data Management, Metadata & Master Data Management Market by Country
- 10.2.6.8 Europe Others Market by Country
- 10.2.7 Europe Graph Database Market by Country
- 10.2.7.1 Germany Graph Database Market
- 10.2.7.1.1 Germany Graph Database Market by Type
- 10.2.7.1.2 Germany Graph Database Market by Vertical
- 10.2.7.1.3 Germany Graph Database Market by Component
- 10.2.7.1.4 Germany Graph Database Market by Deployment Type
- 10.2.7.1.5 Germany Graph Database Market by Organization Size
- 10.2.7.1.6 Germany Graph Database Market by Application
- 10.2.7.2 UK Graph Database Market
- 10.2.7.2.1 UK Graph Database Market by Type
- 10.2.7.2.2 UK Graph Database Market by Vertical
- 10.2.7.2.3 UK Graph Database Market by Component
- 10.2.7.2.4 UK Graph Database Market by Deployment Type
- 10.2.7.2.5 UK Graph Database Market by Organization Size
- 10.2.7.2.6 UK Graph Database Market by Application
- 10.2.7.3 France Graph Database Market
- 10.2.7.3.1 France Graph Database Market by Type
- 10.2.7.3.2 France Graph Database Market by Vertical
- 10.2.7.3.3 France Graph Database Market by Component
- 10.2.7.3.4 France Graph Database Market by Deployment Type
- 10.2.7.3.5 France Graph Database Market by Organization Size
- 10.2.7.3.6 France Graph Database Market by Application
- 10.2.7.4 Russia Graph Database Market
- 10.2.7.4.1 Russia Graph Database Market by Type
- 10.2.7.4.2 Russia Graph Database Market by Vertical
- 10.2.7.4.3 Russia Graph Database Market by Component
- 10.2.7.4.4 Russia Graph Database Market by Deployment Type
- 10.2.7.4.5 Russia Graph Database Market by Organization Size
- 10.2.7.4.6 Russia Graph Database Market by Application
- 10.2.7.5 Spain Graph Database Market
- 10.2.7.5.1 Spain Graph Database Market by Type
- 10.2.7.5.2 Spain Graph Database Market by Vertical
- 10.2.7.5.3 Spain Graph Database Market by Component
- 10.2.7.5.4 Spain Graph Database Market by Deployment Type
- 10.2.7.5.5 Spain Graph Database Market by Organization Size
- 10.2.7.5.6 Spain Graph Database Market by Application
- 10.2.7.6 Italy Graph Database Market
- 10.2.7.6.1 Italy Graph Database Market by Type
- 10.2.7.6.2 Italy Graph Database Market by Vertical
- 10.2.7.6.3 Italy Graph Database Market by Component
- 10.2.7.6.4 Italy Graph Database Market by Deployment Type
- 10.2.7.6.5 Italy Graph Database Market by Organization Size
- 10.2.7.6.6 Italy Graph Database Market by Application
- 10.2.7.7 Rest of Europe Graph Database Market
- 10.2.7.7.1 Rest of Europe Graph Database Market by Type
- 10.2.7.7.2 Rest of Europe Graph Database Market by Vertical
- 10.2.7.7.3 Rest of Europe Graph Database Market by Component
- 10.2.7.7.4 Rest of Europe Graph Database Market by Deployment Type
- 10.2.7.7.5 Rest of Europe Graph Database Market by Organization Size
- 10.2.7.7.6 Rest of Europe Graph Database Market by Application
- 10.3 Asia Pacific Graph Database Market
- 10.3.1 Asia Pacific Graph Database Market by Type
- 10.3.1.1 Asia Pacific Labeled Property Graph Market by Country
- 10.3.1.2 Asia Pacific Resource Description Framework Market by Country
- 10.3.2 Asia Pacific Graph Database Market by Vertical
- 10.3.2.1 Asia Pacific BFSI Market by Country
- 10.3.2.2 Asia Pacific Telecom & IT Market by Country
- 10.3.2.3 Asia Pacific Manufacturing & Automotive Market by Country
- 10.3.2.4 Asia Pacific Retail & Ecommerce Market by Country
- 10.3.2.5 Asia Pacific Government & Public Sector Market by Country
- 10.3.2.6 Asia Pacific Healthcare & Life Sciences Market by Country
- 10.3.2.7 Asia Pacific Media & Entertainment Market by Country
- 10.3.2.8 Asia Pacific Energy & Utilities Market by Country
- 10.3.2.9 Asia Pacific Travel & Hospitality Market by Country
- 10.3.2.10 Asia Pacific Transportation & Logistics Market by Country
- 10.3.2.11 Asia Pacific Other Vertical Market by Country
- 10.3.3 Asia Pacific Graph Database Market by Component
- 10.3.3.1 Asia Pacific Software Market by Country
- 10.3.3.2 Asia Pacific Services Market by Country
- 10.3.4 Asia Pacific Graph Database Market by Deployment Type
- 10.3.4.1 Asia Pacific On-premise Market by Country
- 10.3.4.2 Asia Pacific Cloud Market by Country
- 10.3.5 Asia Pacific Graph Database Market by Organization Size
- 10.3.5.1 Asia Pacific Large Enterprises Market by Country
- 10.3.5.2 Asia Pacific Small & Medium Enterprises Market by Country
- 10.3.6 Asia Pacific Graph Database Market by Application
- 10.3.6.1 Asia Pacific Fraud Detection & Prevention Market by Country
- 10.3.6.2 Asia Pacific Risk, Compliance & Reporting Management Market by Country
- 10.3.6.3 Asia Pacific Supply Chain Management, Operations Management & Asset Management Market by Country
- 10.3.6.4 Asia Pacific Knowledge Management, Content Management, Data Extraction & Search Market by Country
- 10.3.6.5 Asia Pacific Customer Analytics & Recommendation Engines Market by Country
- 10.3.6.6 Asia Pacific Infrastructure Management, IoT, Industry 4.0 Market by Country
- 10.3.6.7 Asia Pacific Scientific Data Management, Metadata & Master Data Management Market by Country
- 10.3.6.8 Asia Pacific Others Market by Country
- 10.3.7 Asia Pacific Graph Database Market by Country
- 10.3.7.1 China Graph Database Market
- 10.3.7.1.1 China Graph Database Market by Type
- 10.3.7.1.2 China Graph Database Market by Vertical
- 10.3.7.1.3 China Graph Database Market by Component
- 10.3.7.1.4 China Graph Database Market by Deployment Type
- 10.3.7.1.5 China Graph Database Market by Organization Size
- 10.3.7.1.6 China Graph Database Market by Application
- 10.3.7.2 Japan Graph Database Market
- 10.3.7.2.1 Japan Graph Database Market by Type
- 10.3.7.2.2 Japan Graph Database Market by Vertical
- 10.3.7.2.3 Japan Graph Database Market by Component
- 10.3.7.2.4 Japan Graph Database Market by Deployment Type
- 10.3.7.2.5 Japan Graph Database Market by Organization Size
- 10.3.7.2.6 Japan Graph Database Market by Application
- 10.3.7.3 India Graph Database Market
- 10.3.7.3.1 India Graph Database Market by Type
- 10.3.7.3.2 India Graph Database Market by Vertical
- 10.3.7.3.3 India Graph Database Market by Component
- 10.3.7.3.4 India Graph Database Market by Deployment Type
- 10.3.7.3.5 India Graph Database Market by Organization Size
- 10.3.7.3.6 India Graph Database Market by Application
- 10.3.7.4 South Korea Graph Database Market
- 10.3.7.4.1 South Korea Graph Database Market by Type
- 10.3.7.4.2 South Korea Graph Database Market by Vertical
- 10.3.7.4.3 South Korea Graph Database Market by Component
- 10.3.7.4.4 South Korea Graph Database Market by Deployment Type
- 10.3.7.4.5 South Korea Graph Database Market by Organization Size
- 10.3.7.4.6 South Korea Graph Database Market by Application
- 10.3.7.5 Singapore Graph Database Market
- 10.3.7.5.1 Singapore Graph Database Market by Type
- 10.3.7.5.2 Singapore Graph Database Market by Vertical
- 10.3.7.5.3 Singapore Graph Database Market by Component
- 10.3.7.5.4 Singapore Graph Database Market by Deployment Type
- 10.3.7.5.5 Singapore Graph Database Market by Organization Size
- 10.3.7.5.6 Singapore Graph Database Market by Application
- 10.3.7.6 Malaysia Graph Database Market
- 10.3.7.6.1 Malaysia Graph Database Market by Type
- 10.3.7.6.2 Malaysia Graph Database Market by Vertical
- 10.3.7.6.3 Malaysia Graph Database Market by Component
- 10.3.7.6.4 Malaysia Graph Database Market by Deployment Type
- 10.3.7.6.5 Malaysia Graph Database Market by Organization Size
- 10.3.7.6.6 Malaysia Graph Database Market by Application
- 10.3.7.7 Rest of Asia Pacific Graph Database Market
- 10.3.7.7.1 Rest of Asia Pacific Graph Database Market by Type
- 10.3.7.7.2 Rest of Asia Pacific Graph Database Market by Vertical
- 10.3.7.7.3 Rest of Asia Pacific Graph Database Market by Component
- 10.3.7.7.4 Rest of Asia Pacific Graph Database Market by Deployment Type
- 10.3.7.7.5 Rest of Asia Pacific Graph Database Market by Organization Size
- 10.3.7.7.6 Rest of Asia Pacific Graph Database Market by Application
- 10.4 LAMEA Graph Database Market
- 10.4.1 LAMEA Graph Database Market by Type
- 10.4.1.1 LAMEA Labeled Property Graph Market by Country
- 10.4.1.2 LAMEA Resource Description Framework Market by Country
- 10.4.2 LAMEA Graph Database Market by Vertical
- 10.4.2.1 LAMEA BFSI Market by Country
- 10.4.2.2 LAMEA Telecom & IT Market by Country
- 10.4.2.3 LAMEA Manufacturing & Automotive Market by Country
- 10.4.2.4 LAMEA Retail & Ecommerce Market by Country
- 10.4.2.5 LAMEA Government & Public Sector Market by Country
- 10.4.2.6 LAMEA Healthcare & Life Sciences Market by Country
- 10.4.2.7 LAMEA Media & Entertainment Market by Country
- 10.4.2.8 LAMEA Energy & Utilities Market by Country
- 10.4.2.9 LAMEA Travel & Hospitality Market by Country
- 10.4.2.10 LAMEA Transportation & Logistics Market by Country
- 10.4.2.11 LAMEA Other Vertical Market by Country
- 10.4.3 LAMEA Graph Database Market by Component
- 10.4.3.1 LAMEA Software Market by Country
- 10.4.3.2 LAMEA Services Market by Country
- 10.4.4 LAMEA Graph Database Market by Deployment Type
- 10.4.4.1 LAMEA On-premise Market by Country
- 10.4.4.2 LAMEA Cloud Market by Country
- 10.4.5 LAMEA Graph Database Market by Organization Size
- 10.4.5.1 LAMEA Large Enterprises Market by Country
- 10.4.5.2 LAMEA Small & Medium Enterprises Market by Country
- 10.4.6 LAMEA Graph Database Market by Application
- 10.4.6.1 LAMEA Fraud Detection & Prevention Market by Country
- 10.4.6.2 LAMEA Risk, Compliance & Reporting Management Market by Country
- 10.4.6.3 LAMEA Supply Chain Management, Operations Management & Asset Management Market by Country
- 10.4.6.4 LAMEA Knowledge Management, Content Management, Data Extraction & Search Market by Country
- 10.4.6.5 LAMEA Customer Analytics & Recommendation Engines Market by Country
- 10.4.6.6 LAMEA Infrastructure Management, IoT, Industry 4.0 Market by Country
- 10.4.6.7 LAMEA Scientific Data Management, Metadata & Master Data Management Market by Country
- 10.4.6.8 LAMEA Others Market by Country
- 10.4.7 LAMEA Graph Database Market by Country
- 10.4.7.1 Brazil Graph Database Market
- 10.4.7.1.1 Brazil Graph Database Market by Type
- 10.4.7.1.2 Brazil Graph Database Market by Vertical
- 10.4.7.1.3 Brazil Graph Database Market by Component
- 10.4.7.1.4 Brazil Graph Database Market by Deployment Type
- 10.4.7.1.5 Brazil Graph Database Market by Organization Size
- 10.4.7.1.6 Brazil Graph Database Market by Application
- 10.4.7.2 Argentina Graph Database Market
- 10.4.7.2.1 Argentina Graph Database Market by Type
- 10.4.7.2.2 Argentina Graph Database Market by Vertical
- 10.4.7.2.3 Argentina Graph Database Market by Component
- 10.4.7.2.4 Argentina Graph Database Market by Deployment Type
- 10.4.7.2.5 Argentina Graph Database Market by Organization Size
- 10.4.7.2.6 Argentina Graph Database Market by Application
- 10.4.7.3 UAE Graph Database Market
- 10.4.7.3.1 UAE Graph Database Market by Type
- 10.4.7.3.2 UAE Graph Database Market by Vertical
- 10.4.7.3.3 UAE Graph Database Market by Component
- 10.4.7.3.4 UAE Graph Database Market by Deployment Type
- 10.4.7.3.5 UAE Graph Database Market by Organization Size
- 10.4.7.3.6 UAE Graph Database Market by Application
- 10.4.7.4 Saudi Arabia Graph Database Market
- 10.4.7.4.1 Saudi Arabia Graph Database Market by Type
- 10.4.7.4.2 Saudi Arabia Graph Database Market by Vertical
- 10.4.7.4.3 Saudi Arabia Graph Database Market by Component
- 10.4.7.4.4 Saudi Arabia Graph Database Market by Deployment Type
- 10.4.7.4.5 Saudi Arabia Graph Database Market by Organization Size
- 10.4.7.4.6 Saudi Arabia Graph Database Market by Application
- 10.4.7.5 South Africa Graph Database Market
- 10.4.7.5.1 South Africa Graph Database Market by Type
- 10.4.7.5.2 South Africa Graph Database Market by Vertical
- 10.4.7.5.3 South Africa Graph Database Market by Component
- 10.4.7.5.4 South Africa Graph Database Market by Deployment Type
- 10.4.7.5.5 South Africa Graph Database Market by Organization Size
- 10.4.7.5.6 South Africa Graph Database Market by Application
- 10.4.7.6 Nigeria Graph Database Market
- 10.4.7.6.1 Nigeria Graph Database Market by Type
- 10.4.7.6.2 Nigeria Graph Database Market by Vertical
- 10.4.7.6.3 Nigeria Graph Database Market by Component
- 10.4.7.6.4 Nigeria Graph Database Market by Deployment Type
- 10.4.7.6.5 Nigeria Graph Database Market by Organization Size
- 10.4.7.6.6 Nigeria Graph Database Market by Application
- 10.4.7.7 Rest of LAMEA Graph Database Market
- 10.4.7.7.1 Rest of LAMEA Graph Database Market by Type
- 10.4.7.7.2 Rest of LAMEA Graph Database Market by Vertical
- 10.4.7.7.3 Rest of LAMEA Graph Database Market by Component
- 10.4.7.7.4 Rest of LAMEA Graph Database Market by Deployment Type
- 10.4.7.7.5 Rest of LAMEA Graph Database Market by Organization Size
- 10.4.7.7.6 Rest of LAMEA Graph Database Market by Application
- Chapter 11. Company Profiles
- 11.1 IBM Corporation
- 11.1.1 Company Overview
- 11.1.2 Financial Analysis
- 11.1.3 Regional & Segmental Analysis
- 11.1.4 Research & Development Expenses
- 11.1.5 SWOT Analysis
- 11.2 Amazon Web Services, Inc. (Amazon.com, Inc.)
- 11.2.1 Company Overview
- 11.2.2 Financial Analysis
- 11.2.3 Segmental and Regional Analysis
- 11.2.4 Recent strategies and developments:
- 11.2.4.1 Product Launches and Product Expansions:
- 11.3 Microsoft Corporation
- 11.3.1 Company Overview
- 11.3.2 Financial Analysis
- 11.3.3 Segmental and Regional Analysis
- 11.3.4 Research & Development Expenses
- 11.4 Oracle Corporation
- 11.4.1 Company Overview
- 11.4.2 Financial Analysis
- 11.4.3 Segmental and Regional Analysis
- 11.4.4 Research & Development Expense
- 11.4.5 Recent strategies and developments:
- 11.4.5.1 Product Launches and Product Expansions:
- 11.4.6 SWOT Analysis
- 11.5 SAP SE
- 11.5.1 Company Overview
- 11.5.2 Financial Analysis
- 11.5.3 Segmental and Regional Analysis
- 11.5.4 Research & Development Expense
- 11.5.5 SWOT Analysis
- 11.6 Teradata Corporation
- 11.6.1 Company Overview
- 11.6.2 Financial Analysis
- 11.6.3 Regional Analysis
- 11.6.4 Research & Development Expense
- 11.6.5 Recent strategies and developments:
- 11.6.5.1 Product Launches and Product Expansions:
- 11.6.6 SWOT Analysis
- 11.7 Hewlett Packard Enterprise Company
- 11.7.1 Company Overview
- 11.7.2 Financial Analysis
- 11.7.3 Segmental and Regional Analysis
- 11.7.4 Research & Development Expense
- 11.7.5 Recent strategies and developments:
- 11.7.5.1 Partnerships, Collaborations, and Agreements:
- 11.7.6 SWOT Analysis
- 11.8 TigerGraph
- 11.8.1 Company Overview
- 11.8.2 Recent strategies and developments:
- 11.8.2.1 Product Launches and Product Expansions:
- 11.9 OpenLink Software, Inc.
- 11.9.1 Company Overview
- 11.9.2 Recent strategies and developments:
- 11.9.2.1 Product Launches and Product Expansions:
- 11.10. MarkLogic Corporation
- 11.10.1 Company Overview
- 11.10.2 Recent strategies and developments:
- 11.10.2.1 Acquisition and Mergers:
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.

