MLOps — Where ML Meets DevOps
This IDC Perspective draws parallels between MLOps and DevOps approaches. As customers are moving more models from experimentation to production, they need scalable ways to collaborate, operate, and operationalize machine learning models. To leverage the tremendous opportunities that this provides, IDC recommends leveraging MLOps methodologies, building upon DevOps processes to improve collaboration between data scientists and operational engineers, automate, and accelerate model velocity."Top challenges that customers face with implementing AI/ML initiatives in production include lack of expertise, cost, and lack of automation," said Sriram Subramanian, research director, AI and Automation Software research at IDC. "MLOps capabilities enable customers to overcome these challenges by improving collaboration between data scientists, application developers, and operational engineers; automating end-to-end model life-cycle management; and increasing model velocity."
Please Note: Extended description available upon request.
In this report,
Search for an exact word or phrase by placing the word or phrase in quotation marks ("market trend"). Search for different versions or tenses of a word by placing an asterisk at the end of the word (pharma*).
Please note that your term must be at least three characters long and numbers will be blocked by the # sign.
Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook