MLOps — Where ML Meets DevOps

MLOps — Where ML Meets DevOps

This IDC Perspective draws parallels between MLOps and DevOps approaches. As customers are moving more models from experimentation to production, they need scalable ways to collaborate, operate, and operationalize machine learning models. To leverage the tremendous opportunities that this provides, IDC recommends leveraging MLOps methodologies, building upon DevOps processes to improve collaboration between data scientists and operational engineers, automate, and accelerate model velocity."Top challenges that customers face with implementing AI/ML initiatives in production include lack of expertise, cost, and lack of automation," said Sriram Subramanian, research director, AI and Automation Software research at IDC. "MLOps capabilities enable customers to overcome these challenges by improving collaboration between data scientists, application developers, and operational engineers; automating end-to-end model life-cycle management; and increasing model velocity."

Please Note: Extended description available upon request.


Executive Snapshot
Situation Overview
Overview
Challenges Implementing AI Solutions
Lack of Automation
Cost
Lack of Expertise
What Is MLOps?
Model Serving
Model Registry
Model Tracking
Model Monitoring
ML Pipeline and MLOps
DevOps at a Glance
Machine Learning Meets DevOps
Advice for the Technology Buyer
Treat Models as Source Code
Plan for Scale
Build Upon DevOps Processes
Learn More
Related Research
Synopsis

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings