Applications of AI for Anomaly Detection

Applications of AI for Anomaly Detection

This IDC Perspective examines the business benefits of AI-powered anomaly detection in organizations. It discusses the various techniques organizations use to identify anomalies and the most prevalent use cases. It also discusses some of the key players in this industry. It provides guidance to technology buyers on how to embrace AI-powered anomaly detection and maximize ROI."AI-powered anomaly detection is growing in popularity and has numerous applications across business activities and industries," says Raghunandhan Kuppuswamy, research manager for AI and Automation at IDC. "Choosing the correct AI-powered anomaly detection solutions could eliminate many of the problems associated with anomalies and the issues companies encounter as a result of anomalies."

Please Note: Extended description available upon request.


Executive Snapshot
Situation Overview
AI-Powered Anomaly Detection
What Are the Various Anomaly Detection Techniques?
Supervised Anomaly Detection
K-Nearest Neighbors
Z-Score
Decision Tree Algorithm
Support Vector Machines
Bayesian Networks
Unsupervised Anomaly Detection
K-Means Clustering
Autoencoders
Isolation Forest
Local Outlier Factor
Semi-Supervised Anomaly Detection
Anomaly Detection on Edge Devices
Use Cases
AI-Powered Anomaly Detection in Banking
AI-Powered Anomaly Detection in Cybersecurity
AI-Powered Anomaly Detection in Healthcare
Companies to Watch in the AI-Powered Anomaly Detection Space
Advice for the Technology Buyer
Learn More
Related Research
Synopsis

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings