Large Language Model Market Size, Share & Trends Analysis Report By Application (Customer Service, Content Generation), By Deployment, By Industry Vertical, By Region, And Segment Forecasts, 2024 - 2030
Large Language Model Market Size, Share & Trends Analysis Report By Application (Customer Service, Content Generation), By Deployment, By Industry Vertical, By Region, And Segment Forecasts, 2024 - 2030
Large Language Model Market Growth & Trends
The global large language model market size is anticipated to reach USD 35.43 billion by 2030 and it is projected to grow at a CAGR of 35.9% from 2024 to 2030, according to a new report by Grand View Research, Inc. The increasing demand for Natural Language Processing (NLP) applications is propelling the large language model (llm) market growth. These models encompass various tasks like condensing text, analyzing sentiments, generating content, translating languages, and creating chatbots and virtual assistants. These large language models play a crucial role in the age of conversational AI and data-centric decision-making by serving as the foundation for interpreting, analyzing, and generating human-like text, enabling these applications.
Large language models play a key role in content creation, increasingly utilized by businesses to automate the generation of marketing, journalism, and advertising materials. Owing to this automation, these models have become indispensable for content-centric enterprises, ensuring not only time and cost savings but also consistent and high-quality outputs. Robust language models capable of comprehending and processing vast amounts of digital text data from sources like social media, websites, and documents have become imperative due to the sheer abundance of such data. Improved training methods for large language models now enable more effective and precise responses that align better with context and accuracy.
In North America, there has been a noteworthy shift toward the development of robust ethical structures and the promotion of responsible AI use, particularly regarding large language models. The focus on developing and adhering to ethical norms when deploying these models has intensified as concerns about prejudice, fairness, and ethical implications of AI grow. Companies and other organizations are actively engaged in discussions and initiatives addressing ethical challenges, with an emphasis on ensuring that AI systems are transparent, equitable, and responsible. There's also a noticeable attempt to adhere to governance standards and laws designed with large language models in mind.
Large Language Model Market Report Highlights
In terms of application, the chatbots and virtual assistant segment led the market in 2023 with largest revenue share of 26.4%. This technology is rising to prominence as a key instrument in the field of personalized language learning, using AI-powered interactions to deliver individualized instruction
Based on deployment, on-premises segment held the largest market revenue share of 56.86% in 2023 and is progressively adjusting to hybrid models, which combine cloud-based capabilities with local infrastructure to give customers more freedom while preserving control and security over their data
Based on industry vertical, the retail and e-commerce segment held the largest market in 2023, as the industry vertical segment is seeing an increase in the need for multilingual customer care programs and material created specifically for each language, to improve customer satisfaction in a variety of international markets
In October 2023, Baidu launched ERNIE 4.0, the company's most potent and advanced foundation model, which offers significantly improved fundamental AI capabilities. After a complete overhaul, ERNIE 4.0 now performs significantly better in understanding, generation, reasoning, and memory. These four fundamental skills, which serve as the cornerstone of AI-native applications, have now opened up countless avenues for creativity
Please note The report will be delivered in 4-6 business days upon order notification.
Chapter 1. Methodology and Scope
1.1. Market Segmentation and Scope
1.2. Market Definitions
1.3. Research Methodology
1.3.1. Information Procurement
1.3.2. Information or Data Analysis
1.3.3. Market Formulation & Data Visualization
1.3.4. Data Validation & Publishing
1.4. Research Scope and Assumptions
1.4.1. List of Data Sources
Chapter 2. Executive Summary
2.1. Market Outlook
2.2. Segment Outlook
2.3. Competitive Insights
Chapter 3. Large Language Models Market Variables, Trends, & Scope
3.1. Market Introduction/Lineage Outlook
3.2. Market Size and Growth Prospects (USD Million)
3.3. Industry Value Chain Analysis
3.4. Market Dynamics
3.4.1. Market Drivers Analysis
3.4.2. Market Restraints Analysis
3.4.3. Industry Opportunities
3.4.4. Industry Challenges
3.5. Large Language Models Market Analysis Tools
3.5.1. Porter’s Analysis
3.5.1.1. Bargaining power of the suppliers
3.5.1.2. Bargaining power of the buyers
3.5.1.3. Threats of substitution
3.5.1.4. Threats from new entrants
3.5.1.5. Competitive rivalry
3.5.2. PESTEL Analysis
3.5.2.1. Political landscape
3.5.2.2. Economic and Social landscape
3.5.2.3. Technological landscape
3.5.2.4. Environmental landscape
3.5.2.5. Legal landscape
Chapter 4. Large Language Models Market: Application Estimates & Trend Analysis
4.1. Segment Dashboard
4.2. Large Language Models Market: Application Movement Analysis, 2023 & 2030 (USD Million)
4.3. Customer Service
4.3.1. Customer Service Market Revenue Estimates and Forecasts, 2017 - 2030 (USD Million)