GPU As A Service Market Size, Share & Trends Analysis Report By Component, By Pricing Model, By Organization Size, By Industry Vertical, By Region, and Segment Forecasts, 2024 - 2030
GPU As A Service Market Size, Share & Trends Analysis Report By Component, By Pricing Model, By Organization Size, By Industry Vertical, By Region, and Segment Forecasts, 2024 - 2030
GPU As A Service Market Growth & Trends
The global GPU as a service market size is expected to reach USD 12.26 billion by 2030, according to a new report by Grand View Research, Inc. The market is anticipated to expand at a CAGR of 21.6% from 2024 to 2030. Artificial Intelligence (AI) and Machine Learning (ML) applications have become increasingly prevalent across various industries. These applications often require substantial computational power, which graphics processing units (GPUs) are well-suited to provide. GPU as a service (GPUaaS) provides scalability, allowing users to adjust their computational resources based on their specific requirements. As more businesses and researchers adopt AI and ML technologies, the demand for GPUaaS has risen accordingly.
The growing popularity of cloud computing has facilitated the expansion of GPUaaS offerings. Cloud service providers offer GPU instances to cater to customers who need powerful computing resources for tasks like deep learning, data analysis, rendering, and more. This has made GPUs more accessible to a broader range of users who may not have the means to invest in expensive hardware. For instance, Amazon Web Services (AWS) is a cloud service provider globally, and it offers a variety of GPU instances under its Amazon Elastic Compute Cloud (Amazon EC2) service. AWS provides different GPU instance types to cater to various computational workloads.
GPUaaS allows organizations and individuals to adjust their computational resources based on their specific needs, making it an appealing choice for those with varying GPU power requirements. The ability to scale GPU resources based on project and workload demands makes this flexibility highly appealing to organizations with varying GPU power needs. For instance, Google Cloud Platform (GCP) is a cloud service provider offering many GPU instances, including the potent NVIDIA A100 Tensor Core GPUs. These GPUs, built on the NVIDIA Ampere architecture, deliver substantial performance improvements for AI, ML, and high-performance computing workloads.
North America generated the largest revenue for the market in 2023. Businesses in North America are actively pursuing digital transformation strategies, and GPU as a Service is a crucial component of this process. The North America market has grown substantially and is important in the overall cloud computing and artificial intelligence (AI) ecosystem. The rising demand for GPUaaS is primarily fueled by the widespread adoption of AI, machine learning (ML), data analytics, and other GPU-intensive tasks across diverse industries. The Asia Pacific region is expected to be the fastest-growing market during the forecast period. The Asia-Pacific region is known for its rapid adoption of emerging technologies. Countries like China, India, Japan, South Korea, Australia, and Singapore have been at the forefront of GPUaaS adoption in the Asia-Pacific region.
GPU As A Service Market Report Highlights
The gaming segment dominated the market with a revenue share of 25.3% in 2023. The gaming sector has seen a remarkable expansion in recent years, fueled by the rising popularity of online gaming, eSports, and virtual reality (VR) gaming.
The North America region dominated the global market with a revenue share of 33.6% in 2023. Major cloud service providers like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) have expanded their GPUaaS offerings in North America.
Businesses increasingly relied on data analytics and high-performance computing, which often require powerful GPUs. GPUaaS provided an efficient way to access such computational power on demand.
Researchers and institutions have been leveraging GPU as a Service to meet the computational demands of various scientific simulations, data analysis, and computational tasks. GPUs are highly efficient in performing parallel computations, making them well-suited for accelerating complex and computationally intensive workloads commonly found in research and scientific domains.
Please note The report will be delivered in 4-8 business days upon order notification.