GPU As A Service (GPUaaS) Market Size, Share & Trends Analysis Report By Component (Solution, Services), By Industry Vertical (BFSI, Gaming), By Pricing Model, By Organization Size, By Region, And Segment Forecasts, 2023 - 2030
GPU As A Service (GPUaaS) Market Size, Share & Trends Analysis Report By Component (Solution, Services), By Industry Vertical (BFSI, Gaming), By Pricing Model, By Organization Size, By Region, And Segment Forecasts, 2023 - 2030
GPU As A Service Market Growth & Trends
The global GPU as a Service market size is anticipated to reach USD 12.26 billion by 2030, according to a new report by Grand View Research, Inc. The market is anticipated to grow at a CAGR of 20.3% from 2023 to 2030. Artificial Intelligence (AI) and Machine Learning (ML) applications have become increasingly prevalent across various industries. These applications often require substantial computational power, which GPUs are well-suited to provide. GPUaaS provides scalability, allowing users to adjust their computational resources based on their specific requirements. As more businesses and researchers adopt AI and ML technologies, the demand for GPUaaS has risen accordingly.
The growing popularity of cloud computing has facilitated the expansion of GPUaaS offerings. Cloud service providers offer GPU instances to cater to customers who need powerful computing resources for tasks like deep learning, data analysis, rendering, and more. This has made GPUs more accessible to a broader range of users who may not have the means to invest in expensive hardware. For instance, Amazon Web Services (AWS) is a cloud service provider globally, and it offers a variety of GPU instances under its Amazon Elastic Compute Cloud (Amazon EC2) service. AWS provides different GPU instance types to cater to various computational workloads.
GPUaaS allows organizations and individuals to adjust their computational resources based on their specific needs, making it an appealing choice for those with varying GPU power requirements. The ability to scale GPU resources based on project and workload demands makes this flexibility highly appealing to organizations with varying GPU power needs. For instance, Google Cloud Platform (GCP) is a cloud service provider offering many GPU instances, including the potent NVIDIA A100 Tensor Core GPUs. These GPUs, built on the NVIDIA Ampere architecture, deliver substantial performance improvements for AI, ML, and high-performance computing workloads.
North America generated the largest revenue for the market. Businesses in North America are actively pursuing digital transformation strategies, and GPU as a Service is a crucial component of this process. North America's market has grown substantially and is important in the overall cloud computing and AI ecosystem. The rising demand for GPUaaS is primarily fueled by the widespread adoption of AI, ML, data analytics, and other GPU-intensive tasks across diverse industries. The Asia Pacific region is anticipated to be the fastest-growing market during the forecast period. The Asia-Pacific region is known for its rapid adoption of emerging technologies. Countries like China, India, Japan, South Korea, Australia, and Singapore have been at the forefront of GPUaaS adoption in the Asia-Pacific region.
GPU As A Service Market Report Highlights
In terms of industry vertical, the gaming segment dominated the market in 2022 with a revenue share of 25.1%. The gaming sector has seen a remarkable expansion in recent years, fueled by the rising popularity of online gaming, eSports, and virtual reality (VR) gaming
Based on region, the North America region dominated the market in 2022 with a revenue share of 34.0%. Major cloud service providers like Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP) have expanded their GPUaaS offerings in North America
In terms of component, the solution segment dominated the market in 2022 with a revenue share of 56.83%. GPUaaS is sought after for edge computing and IoT applications, where real-time data processing and AI inferencing are required at the network's edge. The efficiency of GPUs allows businesses to implement AI-driven solutions on edge devices with constrained resources
In terms of organization size, the large-size organization segment led the market in 2022 with a revenue share of 57.04%. GPUaaS offers scalability to accommodate varying computational demands. Large organizations often have fluctuating workloads, and GPUaaS allows them to scale GPU resources depending on their needs, ensuring optimal performance and resource utilization
In terms of pricing model, the subscription-based plans segment dominated the market in 2022 with a revenue share of 55.27%. Subscription-based plans often provide cost savings compared to pay-as-you-go models, especially for users who require GPU resources regularly and predictably
Researchers and institutions have been leveraging GPUaaS to meet the computational demands of various scientific simulations, data analysis, and computational tasks. GPUs are highly efficient in performing parallel computations, making them well-suited for accelerating complex and computationally intensive workloads commonly found in research and scientific domains
Please note The report will be delivered in 2-3 business days upon order notification.
Chapter 1. Methodology and Scope
1.1. Market Segmentation and Scope
1.2. Research Methodology
1.2.1. Information Procurement
1.3. Information or Data Analysis
1.4. Methodology
1.5. Research Scope and Assumptions
1.6. Market Formulation & Validation
1.7. Country Based Segment Share Calculation
1.8. List of Data Sources
Chapter 2. Executive Summary
2.1. Market Outlook
2.2. Segment Outlook
2.3. Competitive Insights
Chapter 3. GPU as a Service Market Variables, Trends, & Scope
3.1. Market Lineage Outlook
3.2. Market Dynamics
3.2.1. Market Driver Analysis
3.2.2. Market Restraint Analysis
3.2.3. Industry Challenge
3.3. GPU as a Service Market Analysis Tools
3.3.1. Industry Analysis - Porter’s
3.3.1.1. Bargaining power of the suppliers
3.3.1.2. Bargaining power of the buyers
3.3.1.3. Threats of substitution
3.3.1.4. Threats from new entrants
3.3.1.5. Competitive rivalry
3.3.2. PESTEL Analysis
3.3.2.1. Political landscape
3.3.2.2. Economic and Social Landscape
3.3.2.3. Technological landscape
3.4. Pain Point Analysis
Chapter 4. GPU as a Service Market: Component Estimates & Trend Analysis
4.1. Segment Dashboard
4.2. GPU as a Service Market: Component Movement Analysis, USD Million, 2022 & 2030