Artificial Intelligence For IT Operations Platform Market Size, Share & Trends Analysis Report By Offering, By Application, By Deployment Mode, By Organization Size, By Vertical, By Region, And Segment Forecasts, 2023 - 2030

Artificial Intelligence For IT Operations Platform Market Size, Share & Trends Analysis Report By Offering, By Application, By Deployment Mode, By Organization Size, By Vertical, By Region, And Segment Forecasts, 2023 - 2030


Artificial Intelligence For IT Operations Platform Market Growth & Trends

The global artificial intelligence for IT operations platform market size is expected to reach USD 36.07 billion by 2030, registering a CAGR of 17.4%, according to a new report by Grand View Research, Inc. Rapid digital transformations in global business organizations have brought about increasingly complex datasets. Businesses spend a significant amount of time, cost, and effort on processing large volumes of data. IT operations are also on the edge of this transformation, wherein IT teams are required to manage complex datasets to sustain their business. Besides, there has been a considerable increase in data loads over the last few years due to the distributed architecture and dynamic nature of business applications and services.

With the increasing IT agility requirement, the artificial intelligence for IT operations (AIOps) platform has emerged as a way for IT operations teams to keep up with business demands, trends, and aggressive digitization of IT infrastructure. AIOps platform refers to the AI platform for IT operations that combines human intelligence with automated algorithms to provide full visibility into IT systems' performance. For instance, in March 2022, HCL Technologies, a leading global technology company, announced a center of excellence in collaboration with IBM. This Center of Excellence will assist CSPs in modernizing their network infrastructure, simplifying operations, and transforming service delivery.

The COVID-19 outbreak has created significant challenges and uncertainties for several businesses. AIOps platform can align with the industries, operating in the digital environment amid such a challenging era of business infrastructural transformations. The increasing digital transformation during the pandemic has led to various challenges concerning user experience, security, and the downfall of the industries. Organizations are restructuring operational infrastructure as security-related vulnerabilities in the digital environment have increased, significantly.

Under such highly dynamic circumstances, the AIOps platform helps businesses to take vigilant security measures. For instance, security teams can benefit from AIOps for cybersecurity, where they can gain data security visibility and intelligence. These devices can perform various vital tasks, such as surveillance, threat response, and engagement.

The adoption of cloud computing has been increasing rapidly in recent years. Cloud-hosting services such as Microsoft Azure (Microsoft), AWS (Amazon Web Services, Inc.), and Google Cloud (Alphabet Inc.) appeal to many enterprises, owing to features such as the ability to scale up or down based on usage, pay-per-use, self-service, and high resiliency. These advantages, in turn, lead to lower IT expenditure, better service quality, and faster time-to-market than traditional IT offerings.

AIOps solutions enable new IT operations efficiencies by offering centralized visibility across all environments, which helps diagnose and resolve IT issues, faster. For instance, in February 2022, Deloitte, a consulting and advisory services company, has announced the launch of AIOPS.D. This "AI-fueled, plug-and-play modular" micro-services platform automates business functions such as procurement, supply chain, and finance.

Artificial Intelligence For IT Operations Platform Market Report Highlights
  • Organizations are deploying AIOps platforms specifically for real-time analytics and network & security management
  • Most AIOps platforms focus on providing enriched company data over data about individuals, called intent data. Intent data is collected behavioral information about an individual's online or digital activities
  • The rising adoption of machine learning for infrastructure management in IT environments is one of the major factors driving the market growth
  • Key players are leveraging AI and machine learning technologies to improve resilience and enhance productivity in IT operations
Please note The report will be delivered in 2-3 business days upon order notification.


Chapter 1. Methodology and Scope
1.1. Market Segmentation & Scope
1.1.1. Offering
1.1.2. Application
1.1.3. Deployment Mode
1.1.4. Organization Size
1.1.5. Vertical
1.1.6. Regional scope
1.1.7. Estimates and forecast timeline
1.2. Research Methodology
1.3. Information Procurement
1.3.1. Purchased database
1.3.2. GVR’s internal database
1.3.3. Secondary sources
1.3.4. Primary research
1.3.5. Details of primary research
1.4. Information or Data Analysis
1.5. Market Formulation & Validation
1.6. Model Details
1.7. List of Secondary Sources
1.8. List of Primary Sources
1.9. Objectives
Chapter 2. Executive Summary
2.1. Market Outlook
2.2. Segment Outlook
2.2.1. Offering outlook
2.2.2. Application outlook
2.2.3. Deployment mode outlook
2.2.4. Organization size outlook
2.2.5. Vertical Outlook
2.2.6. Regional outlook
2.3. Competitive Insights
Chapter 3. Artificial Intelligence for IT Operations (AIOps) Platform Market Variables, Trends & Scope
3.1. Market Lineage Outlook
3.2. Industry Value Chain Analysis
3.3. Market Dynamics
3.3.1. Market driver analysis
3.3.2. Market restraint analysis
3.3.3. Market opportunity analysis
3.4. Artificial Intelligence for IT Operations (AIOps) Platform Market Analysis Tools
3.4.1. Industry analysis - Porter’s Five Forces
3.4.1.1. Supplier power
3.4.1.2. Buyer power
3.4.1.3. Substitution threat
3.4.1.4. Threat of new entrant
3.4.1.5. Competitive rivalry
3.4.2. PESTEL analysis
3.4.2.1. Political landscape
3.4.2.2. Technological landscape
3.4.2.3. Economic landscape
Chapter 4. Artificial Intelligence for IT Operations (AIOps) Platform Market: Offering Estimates & Trend Analysis
4.1. Artificial Intelligence for IT Operations (AIOps) Platform Market: Key Takeaways
4.2. Artificial Intelligence for IT Operations (AIOps) Platform Market: Movement & Market Share Analysis, 2022 & 2030
4.3. Platform
4.3.1. Platform market estimates and forecasts, 2017 to 2030 (USD Million)
4.4. Service
4.4.1. Service market estimates and forecasts, 2017 to 2030 (USD Million)
Chapter 5. Artificial Intelligence for IT Operations (AIOps) Platform Market: Application Estimates & Trend Analysis
5.1. Artificial Intelligence for IT Operations (AIOps) Platform Market: Key Takeaways
5.2. Artificial Intelligence for IT Operations (AIOps) Platform Market: Movement & Market Share Analysis, 2022 & 2030
5.3. Infrastructure Management
5.3.1. Infrastructure management market estimates and forecasts, 2017 to 2030 (USD Million)
5.4. Application Performance Analysis
5.4.1. Application performance analysis market estimates and forecasts, 2017 to 2030 (USD Million)
5.5. Real-Time Analytics
5.5.1. Real-time analytics market estimates and forecasts, 2017 to 2030 (USD Million)
5.6. Network & Security Management
5.6.1. Network & security management market estimates and forecasts, 2017 to 2030 (USD Million)
5.7. Others
5.7.1. Others market estimates and forecasts, 2017 to 2030 (USD Million)
Chapter 6. Artificial Intelligence for IT Operations (AIOps) Platform Market: Deployment Mode Estimates & Trend Analysis
6.1. Artificial Intelligence for IT Operations (AIOps) Platform Market: Key Takeaways
6.2. Artificial Intelligence for IT Operations (AIOps) Platform Market: Movement & Market Share Analysis, 2022 & 2030
6.3. Cloud
6.3.1. Cloud market estimates and forecasts, 2017 to 2030 (USD Million)
6.4. On-premise
6.4.1. On-premise delivery market estimates and forecasts, 2017 to 2030 (USD Million)
Chapter 7. Artificial Intelligence for IT Operations (AIOps) Platform Market: Organization Size Estimates & Trend Analysis
7.1. Artificial Intelligence for IT Operations (AIOps) Platform Market: Key Takeaways
7.2. Artificial Intelligence for IT Operations (AIOps) Platform Market: Movement & Market Share Analysis, 2022 & 2030
7.3. SMEs
7.3.1. SMEs market estimates and forecasts, 2017 to 2030 (USD Million)
7.4. Large Enterprises
7.4.1. Large enterprises delivery market estimates and forecasts, 2017 to 2030 (USD Million)
Chapter 8. Artificial Intelligence for IT Operations (AIOps) Platform Market: Vertical Estimates & Trend Analysis
8.1. Artificial Intelligence for IT Operations (AIOps) Platform Market: Key Takeaways
8.2. Artificial Intelligence for IT Operations (AIOps) Platform Market: Movement & Market Share Analysis, 2022 & 2030
8.3. BFSI
8.3.1. BFSI market estimates and forecasts, 2017 to 2030 (USD Million)
8.4. Healthcare & Life Sciences
8.4.1. Healthcare & Life Sciences performance analysis market estimates and forecasts, 2017 to 2030 (USD Million)
8.5. Retail & E-commerce
8.5.1. Retail & E-commerce market estimates and forecasts, 2017 to 2030 (USD Million)
8.6. IT & Telecom
8.6.1. IT & Telecom market estimates and forecasts, 2017 to 2030 (USD Million)
8.7. Energy & Utilities
8.7.1. Energy & Utilities market estimates and forecasts, 2017 to 2030 (USD Million)
8.8. Government & Public Sector
8.8.1. Government & Public Sector market estimates and forecasts, 2017 to 2030 (USD Million)
8.9. Media & Entertainment
8.9.1. Media & Entertainment market estimates and forecasts, 2017 to 2030 (USD Million)
8.10. Others
8.10.1. Others market estimates and forecasts, 2017 to 2030 (USD Million)
Chapter 9. Artificial Intelligence for IT Operations (AIOps) Platform Market: Regional Estimates & Trend Analysis
9.1. Regional Outlook
9.2. Artificial Intelligence for IT Operations (AIOps) Platform Market by Region: Key Takeaway
9.3. North America
9.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.3.2. U.S.
9.3.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.3.3. Canada
9.3.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.4. Europe
9.4.1. UK
9.4.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.4.2. Germany
9.4.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.4.3. France
9.4.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.5. Asia Pacific
9.5.1. Japan
9.5.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.5.2. China
9.5.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.5.3. India
9.5.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.5.4. Australia
9.5.4.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.5.5. South Korea
9.5.5.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.6. Latin America
9.6.1. Brazil
9.6.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.6.2. Mexico
9.6.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.7. MEA
9.7.1. Saudi Arabia
9.7.1.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.7.2. South Africa
9.7.2.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
9.7.3. UAE
9.7.3.1. Market estimates and forecasts, 2017 to 2030 (Revenue, USD Million)
Chapter 10. Competitive Landscape
10.1. Recent Developments & Impact Analysis, By Key Market Participants
10.2. Market Participant Categorization
10.2.1. AppDynamics
10.2.1.1. Company overview
10.2.1.2. Financial performance
10.2.1.3. Product benchmarking
10.2.1.4. Strategic initiatives
10.2.2. BMC Software, Inc.
10.2.2.1. Company overview
10.2.2.2. Financial performance
10.2.2.3. Product benchmarking
10.2.2.4. Strategic initiatives
10.2.3. Broadcom
10.2.3.1. Company overview
10.2.3.2. Financial performance
10.2.3.3. Product benchmarking
10.2.3.4. Strategic initiatives
10.2.4. HCL Technologies Limited
10.2.4.1. Company overview
10.2.4.2. Financial performance
10.2.4.3. Product benchmarking
10.2.4.4. Strategic initiatives
10.2.5. IBM Corporation
10.2.5.1. Company overview
10.2.5.2. Financial performance
10.2.5.3. Product benchmarking
10.2.5.4. Strategic initiatives
10.2.6. Micro Focus
10.2.6.1. Company overview
10.2.6.2. Financial performance
10.2.6.3. Product benchmarking
10.2.6.4. Strategic initiatives
10.2.7. Moogsoft
10.2.7.1. Company overview
10.2.7.2. Financial performance
10.2.7.3. Product benchmarking
10.2.7.4. Strategic initiatives
10.2.8. ProphetStor Data Services, Inc.
10.2.8.1. Company overview
10.2.8.2. Financial performance
10.2.8.3. Product benchmarking
10.2.8.4. Strategic initiatives
10.2.9. Resolve Systems
10.2.9.1. Company overview
10.2.9.2. Financial performance
10.2.9.3. Product benchmarking
10.2.9.4. Strategic initiatives
10.2.10. Splunk Inc.
10.2.10.1. Company overview
10.2.10.2. Financial performance
10.2.10.3. Product benchmarking
10.2.10.4. Strategic initiatives
10.2.11. VMware, Inc.
10.2.11.1. Company overview
10.2.11.2. Financial performance
10.2.11.3. Product benchmarking
10.2.11.4. Strategic initiatives

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings