AI For Healthcare Payer Market Size, Share & Trends Analysis Report By Component (Software, Services), By Deployment, By Application, By Region, And Segment Forecasts, 2024 - 2030
AI For Healthcare Payer Market Size, Share & Trends Analysis Report By Component (Software, Services), By Deployment, By Application, By Region, And Segment Forecasts, 2024 - 2030
AI For Healthcare Payer Market Growth & Trends
The global AI for healthcare payer market size is expected to reach USD 3.58 billion by 2030 and is projected to grow at a CAGR of 9.40% from 2024 to 2030, according to a new report by Grand View Research, Inc. In the rapidly evolving landscape of healthcare, Artificial Intelligence (AI) is emerging as a transformative force within the healthcare payer market. As insurers and other healthcare payers strive to enhance operational efficiency, reduce costs, and improve patient outcomes, AI's role is becoming increasingly pivotal.
The healthcare industry faces complex challenges such as rising costs, increasing patient expectations, and the demand for higher-quality care. Healthcare payers, situated at the intersection of patients, providers, and stakeholders, manage finances and ensure access to essential services. These entities are leveraging advanced technologies like generative AI to enhance operational efficiency, improve decision-making, and deliver superior value.
Handling healthcare claims often creates significant bottlenecks for payers, with delays, errors, and inefficiencies prevalent. According to a Quantiphi article published in April 2024, the American Medical Association (AMA) reports that the average claim error rate among health insurers is 19.3%, resulting in approximately USD 17 billion in avoidable administrative costs annually. These inefficiencies burden the healthcare system and cause frustration for patients and physicians due to delays and additional administrative work. Technologies such as generative AI offer a solution by analyzing historical data to identify patterns, streamlining the claims process, reducing errors, and enhancing operational efficiency. This technology enables healthcare payers to increase productivity and better meet stakeholders' needs, ultimately improving outcomes for all involved.
The increasing demand for higher auto-adjudication rates, coupled with the need to reduce administrative costs and improve operational efficiency, is driving the adoption of AI solutions among healthcare payers. According to a survey conducted by HealthEdge Software, Inc. in January 2024, 69% of payers experience over 20% of their claims not being auto-adjudicated. This shortfall results in a high volume of claims, necessitating manual processing and secondary editing solutions. By leveraging machine learning and natural language processing, AI can accurately process claims, reduce the need for manual intervention, and minimize errors. This lowers administrative costs and accelerates the claims processing cycle, improving overall efficiency and customer satisfaction.
Companies providing AI-powered claims management and policy editing solutions are well-positioned to capitalize on this demand, offering significant value to payers through enhanced automation and cost savings. Consequently, addressing these inefficiencies and high costs is a critical driver for the growth and adoption of AI technologies in the healthcare payer market.
AI For Healthcare Payer Market Report Highlights
Based on component, the software segment held the largest market share of over 58.0% in 2023. This segment is expected to grow at the fastest CAGR during the forecast period, driven by the increasing demand for automation in claims processing, fraud detection, and personalized member engagement. These advancements enhance operational efficiency, reduce costs, and improve decision-making.
Based on deployment, the cloud segment held the largest revenue share in 2023 and is expected to grow at the fastest CAGR over the forecast period. This can be attributed to the growing adoption of cloud-based technologies within the healthcare industry.
Based on application, the claims processing optimization segment held the largest revenue share in 2023. This can be attributed to the increasing complexity of claim processing and the demand for efficiency and improved accuracy in healthcare payer operations.
In 2023, North America dominated the global AI for healthcare payer industry with the largest revenue share. This growth can be attributed to rising healthcare expenditures, adoption of advanced technologies, and modernization of healthcare infrastructure. The Asia Pacific region is expected to grow at the fastest CAGR over the forecast period.
Please note The report will be delivered in 2-3 business days upon order notification.
Chapter 1. Methodology and Scope
1.1. Market Segmentation & Scope
1.2. Research Methodology
1.3. Information Procurement
1.3.1. Purchased database
1.3.2. GVR’s internal database
1.3.3. Secondary sources
1.3.4. Primary research
1.3.5. Details of primary research
1.3.5.1. Data for primary interviews in North America
1.3.5.2. Data for primary interviews in Europe
1.3.5.3. Data for primary interviews in Asia Pacific
1.3.5.4. Data for primary interviews in Latin America
1.3.5.5. Data for Primary interviews in MEA
1.4. Information or Data Analysis
1.4.1. Data analysis models
1.5. Market Formulation & Data Validation
1.6. Model Details
1.6.1. Commodity flow analysis (Model 1)
1.6.2. Approach 1: Commodity flow approach
1.6.3. Volume price analysis (Model 2)
1.6.4. Approach 2: Volume price analysis
1.7. List of Secondary Sources
1.8. List of Primary Sources
1.9. Objectives
Chapter 2. Executive Summary
2.1. Market Outlook
2.2. Segment Outlook
2.2.1. Component outlook
2.2.2. Deployment outlook
2.2.3. Application outlook
2.2.4. Regional outlook
2.3. Competitive Insights
Chapter 3. AI for Healthcare Payer Market Variables, Trends & Scope
3.1. Market Lineage Outlook
3.1.1. Parent market outlook
3.1.2. Related/ancillary market outlook
3.2. Market Dynamics
3.2.1. Market driver analysis
3.2.1.1. Increasing focus on enhanced patient care
3.2.1.2. Increasing healthcare claim cost
3.2.1.3. Technological advancements
3.2.2. Market restraint analysis
3.2.2.1. Regulatory Compliance Challenges
3.2.2.2. Data Quality and Standardization Issues
3.3. AI for Healthcare Payer Market Analysis Tools
3.3.1. Industry Analysis - Porter’s
3.3.1.1. Supplier power
3.3.1.2. Buyer power
3.3.1.3. Substitution threat
3.3.1.4. Threat of new entrant
3.3.1.5. Competitive rivalry
3.3.2. PESTEL Analysis
3.3.2.1. Political landscape
3.3.2.2. Technological landscape
3.3.2.3. Economic landscape
3.3.2.4. Social landscape
3.3.2.5. Legal landscape
Chapter 4. AI for Healthcare Payer Market: Offering Estimates & Trend Analysis
4.1. Definitions and Scope
4.2. Segment Dashboard
4.3. AI for Healthcare Payer Market Movement Analysis
4.4. AI for Healthcare Payer Market Size & Trend Analysis, by Component, 2018 to 2030 (USD Million)
4.4.1. Software
4.4.1.1. Market estimates and forecast 2018 to 2030 (USD Million)
4.4.2. Services
4.4.2.1. Market estimates and forecast 2018 to 2030 (USD Million)
Chapter 5. AI for Healthcare Payer Market: Deployment Estimates & Trend Analysis
5.1. Definitions and Scope
5.2. Segment Dashboard
5.3. AI for Healthcare Payer Market Movement Analysis
5.4. AI for Healthcare Payer Market Size & Trend Analyses, by Deployment, 2018 to 2030 (USD Million)
5.4.1. Cloud
5.4.1.1. Market estimates and forecast 2018 to 2030 (USD Million)
5.4.2. On-Premise
5.4.2.1. Market estimates and forecast 2018 to 2030 (USD Million)
Chapter 6. AI for Healthcare Payer Market: Application Estimates & Trend Analysis
6.1. Definitions and Scope
6.2. Segment Dashboard
6.3. AI for Healthcare Payer Market Movement Analysis
6.4. AI for Healthcare Payer Market Size & Trend Analyses, by End-User, 2018 to 2030 (USD Million)
6.4.1. Claims Processing Optimization
6.4.1.1. Market estimates and forecast 2018 to 2030 (USD Million)
6.4.2. Fraud Detection and Prevention
6.4.2.1. Market estimates and forecast 2018 to 2030 (USD Million)
6.4.3. Revenue Management and Billing
6.4.3.1. Market estimates and forecast 2018 to 2030 (USD Million)
6.4.4. Member Engagement and Personalization
6.4.4.1. Market estimates and forecast 2018 to 2030 (USD Million)
6.4.5. Others
6.4.5.1. Market estimates and forecast 2018 to 2030 (USD Million
Chapter 7. AI for Healthcare Payer Market: Regional Estimates & Trend Analysis by Component, Deployment, & Application
7.1. Regional Market Dashboard
7.2. Global Regional Market Snapshot
7.3. Market Size, & Forecasts Trend Analysis, 2018 to 2030
7.4. North America
7.4.1. Market estimates and forecasts 2018 to 2030 (USD Million)
7.4.2. U.S.
7.4.2.1. U.S. country dynamics
7.4.2.2. U.S. market estimates and forecast, 2018 - 2030 (USD Million)