Machine Learning in Oil and Gas - Thematic Intelligence

Machine Learning in Oil and Gas - Thematic Intelligence


Summary

Machine learning is a rapidly growing field in the oil and gas industry and can potentially revolutionize how companies explore and produce oil and gas. It can be used to analyze seismic data, well logs, and other geologic data to identify potential oil and gas reservoirs. Machine learning algorithms are also capable of analyzing production data and identifying patterns that can be used to improve well performance. This can lead to increased production rates and reduced downtime. Besides, this analysis can also be used to identify potential hazards, thereby preventing any untoward incidents and boosting operational safety. Overall, machine learning has the potential to improve efficiency, increase production, and reduce costs in the oil and gas industry

Scope
  • This report presents an overview of growth of machine learning technologies with special focus on adoption of machine learning in oil and gas industry.
  • It analyses the machine learning value chain in terms of hardware, software, and services, and identifies key players across the value chain.
  • It evaluates the market growth trends, M&A activity, venture financing, patent, and hiring trends in the machine learning theme.
  • The report provides an overview of the competitive positions held by public as well as private machine learning technology vendors as well as adoption among oil and gas companies.
  • It also highlights machine learning use cases by the oil and gas players.
Reasons to Buy
  • Evaluates the machine value chain and highlights major players in each segment.
  • Impact analysis of machine learning on the oil and gas industry.


Executive Summary
Players
Hardware
Services
Technology Briefing
What is machine learning?
Machine learning training techniques
What are deep learning and neural networks?
How are machine learning models trained, tested, and deployed?
Data collection
Data preparation
Training
Model evaluation
Parameter tuning
Publication and monitoring
Cloud, AI chips, and edge computing
How does machine learning affect industries?
Trends
Technology trends
Macroeconomic trends
Regulatory trends
Industry trends
Impact on the Oil and Gas Industry
Aiding in the discovery and extraction of hydrocarbons
Preventing unplanned equipment failures
Negotiating supply chain disruptions
Push for tech start-ups
Case studies
TotalEnergies turns to machine learning to predict pump failures
ExxonMobil automates well drilling with machine learning
Industry Analysis
Market size and growth forecasts
Mergers and acquisitions
Venture financing
Foreign direct investment
Patent trends
Hiring trends
Timeline
Value Chain
Hardware
AI chips
Sensors
Servers
Storage
Networking equipment
Software
Big data management
Machine learning techniques
Services
Machine learning libraries
Machine learning platforms
Machine learning as a service
Companies
Public companies
Private companies
Oil and gas companies
Sector Scorecard
Integrated oil and gas sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Independent oil and gas sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Glossary
Further Reading
GlobalData reports
Our Thematic Research Methodology
About GlobalData
Contact Us
List of Tables
Table 1: Technology trends
Table 2: Macroeconomic trends
Table 3: Regulatory trends
Table 4: Industry trends
Table 5: Mergers and acquisitions
Table 6: key venture financing deals associated with the renewable energy theme in the last two years
Table 7: Machine learning libraries
Table 8: Public companies
Table 9: Private companies
Table 10: Oil and gas companies
Table 11: Glossary
Table 12: GlobalData reports
List of Figures
Figure 1: GlobalData estimates that the global AI markets will be worth $136B in 2026
Figure 2: Who are the leading players in machine learning hardware, and where do they sit in the value chain?
Figure 3: Who are the leading players in machine learning services, and where do they sit in the value chain?
Figure 4: Machine learning is a subset of artificial intelligence
Figure 5: Machine learning can use supervised learning, unsupervised learning, or reinforcement learning
Figure 6: Deep learning neural network structure
Figure 7: Machine learning models are trained and tested using existing data before they can make predictions
Figure 8: Machine learning is impacting every industry
Figure 9: The AI market is predicted to grow substantially from 2022 to 2026
Figure 10: The US dominates the AI market, while computer vision is the leading specialist AI application
Figure 11: After the US, China is the second largest country for machine learning-related venture finance
Figure 12: The total value of venture finance machine learning deals increased between 2020 and 2021
Figure 13: Machine learning R&D operations top FDI business functions
Figure 14: Machine learning patents in oil and gas rose steadily throughout 2020 and 2021 but declined in 2022
Figure 15: US dominates oil and gas machine learning patent registrations, led by Halliburton
Figure 16: Shell has consistently hired the most machine learning professionals in the oil and gas industry
Figure 17: The machine learning story
Figure 18: The machine learning value chain
Figure 19: The machine learning value chain – AI chips
Figure 20: The machine learning value chain – sensors
Figure 21: The machine learning value chain – servers
Figure 22: The machine learning value chain – storage
Figure 23: The machine learning value chain – networking equipment
Figure 24: The machine learning value chain – big data management
Figure 25: The machine learning value chain – machine learning techniques
Figure 26: Classification predicts the outcome of data points into pre-set categories
Figure 27: Linear regression predicts continuous numerical values based on historical training data
Figure 28: The machine learning value chain – machine learning techniques
Figure 29: K-means clustering algorithms assign data points to a predetermined number of clusters based on similarities
Figure 30: The machine learning value chain – machine learning techniques
Figure 31: The machine learning value chain – machine learning libraries
Figure 32: The machine learning value chain – machine learning platforms
Figure 33: Who does what in the integrated oil and gas space?
Figure 34: Thematic screen - Integrated oil and gas sector scorecard
Figure 35: Valuation screen - Integrated oil and gas sector scorecard
Figure 36: Risk screen - Integrated oil and gas sector scorecard
Figure 37: Who does what in the independent oil and gas space?
Figure 38: Thematic screen - Independent oil and gas sector scorecard
Figure 39: Valuation screen - Independent oil and gas sector scorecard
Figure 40: Risk screen - Independent oil and gas sector scorecard
Figure 41: Our five-step approach for generating a sector scorecard

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings