Digital Twins - Thematic Research

Digital Twins - Thematic Research


Summary

Digital twins are digital representations of physical assets, systems, people, or processes. They help detect, prevent, predict, and optimize the physical environment using artificial intelligence (AI), real-time analytics, visualization, and simulation tools. Conceptually, digital twins have been around for decades; a forerunner was used in NASA’s Apollo 13 mission to the moon in 1970. While far from ubiquitous today, adoption is increasing across industries, although challenges around security and interoperability still need to be addressed.

GlobalData forecasts that the global digital twins market will reach $154.3 billion by 2030, driven by advances in underlying technologies such as the Internet of Things (IoT), cloud, AI, and data analytics. The number of use cases for digital twins is increasing and includes remote asset monitoring, 3D design, and modeling of the effects of drugs on human patients.

Interoperability remains a key concern for digital twins. For widespread adoption of digital twins, it is important to ensure they can communicate effectively with each other. This requires standardizing data formats, communication protocols, and interfaces for seamless integration across different platforms, software, and hardware. Efforts are underway to address these challenges; however, achieving full interoperability requires collaboration among industry stakeholders, technology providers, and standardization bodies.

Scope

This report provides an overview of the digital twins theme.

It identifies the key trends impacting growth of the theme over the next 12 to 24 months, split into three categories: technology trends, macroeconomic trends, and regulatory trends.

It includes a comprehensive industry analysis, including use cases for digital twins across various industries, including manufacturing, power, oil and gas, healthcare, construction, automotive, aerospace and defense, government, and sports.

The detailed value chain comprises six layers: a physical layer, a connectivity layer, a data layer, a platform layer, a delivery layer, and a services layer.

Reasons to Buy

The range of potential use cases for digital twins is extensive. They range from design and architecture to engineering, smart cities, aerospace and defense, power, oil and gas, and, probably the most advanced, a digital twin of the human body. This report tells you everything you need to know about digital twins, including identifying the current leaders in some of the most important segments of the digital twins value chain.


Executive Summary
Players
Technology Briefing
The forerunner to today’s digital twins
What are digital twins?
A single version of the truth
Data management
The evolution of digital twins
Challenges facing digital twins
Creating a common language
Standards and interoperability
Security
Data validation
Complexity and cost
The different types of digital twins
The maturity of digital twins
Trends
Technology trends
Macroeconomic trends
Regulatory trends
Industry Analysis
Market size and growth forecasts
Use cases
Manufacturing
Power
Oil and gas
Healthcare
Construction
Automotive
Aerospace and defense
Government
Sports
Timeline
Signals
M&A trends
Venture financing trends
Patent trends
Company filing trends
Value Chain
Physical layer
Connected things
Cameras and lenses
Sensors and microcontrollers
Microprocessors
Connectivity layer
Edge infrastructure
Cloud infrastructure
Networking equipment
Telecom networks
Data layer
Data integration
Data aggregation
Data processing
Data storage
Data validation
Data governance and security
Platform layer
Delivery layer
Licensed software
Digital twin as a service
Services layer
Companies
Sector Scorecards
Application software sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Industrial automation sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Glossary
Further Reading
GlobalData reports
Our Thematic Research Methodology
About GlobalData
Contact Us
List of Tables
Table 1: The maturity of digital twins
Table 2: Technology trends
Table 3: Macroeconomic trends
Table 4: Regulatory trends
Table 5: Digital twins in the manufacturing sector
Table 6: Digital twins in the power sector
Table 7: Digital twins in the oil and gas sector
Table 8: Digital twins in the healthcare sector
Table 9: Digital twins in the construction sector
Table 10: Digital twins in the automotive sector
Table 11: Digital twins in the aerospace and defense sector
Table 12: Digital twins in the government sector
Table 13: Digital twins in the sports sector
Table 14: M&A trends
Table 15: Key venture financing deals associated with the digital twins theme since January 2022
Table 16: Companies
Table 17: Glossary
Table 18: GlobalData reports
List of Figures
Figure 1: Who are the leading players in the digital twins theme, and where do they sit in the value chain?
Figure 2: “Houston, we’ve had a problem.”
Figure 3: Digital twins create live virtual models of the real world
Figure 4: Digital twins have a hunger for data
Figure 5: The global digital twins market will be worth $154 billion by 2030
Figure 6: Digital twin use cases range in sophistication and visibility
Figure 7: Manufacturing operations are a key area for digital twins
Figure 8: Developing the world’s first digital twins for floating offshore wind turbines
Figure 9: BP and Chevron use digital twins to optimize assets
Figure 10: NTT and Harvard are creating a digital twin of the heart
Figure 11: Digital twins offer a single source of the truth
Figure 12: Automotive companies are starting to exploit digital twins
Figure 13: Digital twins are transforming the aerospace industry
Figure 14: Singapore puts its Virtual Singapore digital twin to good use
Figure 15: Digital twins are being used to plan the 2024 Olympic Games
Figure 16: The digital twins story
Figure 17: Digital twin financing deal volume increased between 2019 and 2023
Figure 18: Digital twin patent publications have accelerated since 2016
Figure 19: Siemens, General Electric, and IBM lead the way in digital twins-related patents
Figure 20: Digital twin mentions in company filings across sectors grew significantly between 2016 and 2022
Figure 21: The digital twin value chain
Figure 22: The digital twins value chain - Physical layer: leaders and challengers
Figure 23: The digital twin value chain - Connectivity layer: leaders and challengers
Figure 24: The digital twin value chain - Data layer: leaders and challengers
Figure 25: The digital twins value chain - Platform layer: leaders and challengers
Figure 26: The digital twin value chain - Delivery layer: leaders and challengers
Figure 27: The digital twin value chain - Services layer: leaders and challengers
Figure 28: Who does what in the application software space?
Figure 29: Thematic screen - Application software sector scorecard
Figure 30: Valuation screen - Application software sector scorecard
Figure 31: Risk screen - Application software sector scorecard
Figure 32: Who does what in the industrial automation space?
Figure 33: Thematic screen - Industrial automation sector scorecard
Figure 34: Valuation screen - Industrial automation sector scorecard
Figure 35: Risk screen - Industrial automation sector scorecard
Figure 36: Our five-step approach for generating a sector scorecard

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings