Artificial Intelligence (AI) in Sports - Thematic Intelligence

Artificial Intelligence (AI) in Sports - Thematic Intelligence


Summary

Artificial intelligence (AI) has the potential to be an important technology for the sports industry. Whilst a tried and tested use case has not yet been adopted for generative AI in sports, there is potential across the industry. AI could help tackle the challenges of fan engagement, media competition, and player safety.

Sports teams, companies, federations, and broadcasters are actively exploring the utility of artificial intelligence in the sports industry. The adoption of artificial intelligence intends to increase fan engagement, simplify business processes, and uncover insights in vast datasets. In terms of generative AI, a tried and tested, profitable use case has not yet been adopted by the sports industry.

Key Highlights

The global AI market will be worth $909 billion by 2030.
Sports AI use focuses on machine learning, computer vision.
A killer use case for generative AI in sports has not been found.

Scope
  • This report provides an overview of the artificial intelligence theme and looks at its impact on the sports sector.
  • The detailed value chain breaks down artificial intelligence into five categories: hardware, data management, foundational AI, advanced AI capabilities and delivery.
  • The report includes a comprehensive data analysis, including market size and growth forecasts for artificial intelligence.
  • It also includes selected case studies highlighting who is innovating in sport, using artificial intelligence.
Reasons to Buy
  • This report will help readers understand the business benefits that could be derived from artificial intelligence. In addition, the report identifies the technology vendors that are leading across the artificial intelligence market. The report uncovers the sports federations that are excelling in the artificial intelligence theme within GlobalData's thematic scorecard.


Executive Summary
Players
Sports Challenges
The Impact of AI on Sports
How AI helps tackle the challenge of player safety
How AI helps tackle the challenge of fan engagement
How AI helps tackle the challenges of the decision-making process
How AI helps tackle the challenge of sponsorship
How AI helps tackle the challenge of media competition
Case Studies
The Masters uses IBM’s generative AI technology to create spoken commentary
The DFL Deutsche Fußball Liga uses AI to give detailed statistics in real-time
Wicket’s computer vision technology allows fans to enter stadiums without a ticket
Twenty First Group used machine learning to help Swansea City find a new manager
The PGA Tour is developing a media data lake to engage fans
AI Timeline
Market Size and Growth Forecasts
Signals
Mergers and acquisitions
Patent trends
Social media trends
AI Value Chain
Hardware
Semiconductors
Cameras
Sensors and lasers
Servers
Storage devices
Networking equipment
Edge equipment
Data management
Data governance and security
Data storage
Data processing
Data aggregation
Data integration
Foundational AI
Data science
Machine learning
3D modeling
Knowledge representation and reasoning
Visualization engines
Advanced AI capabilities
Human-AI interaction
Decision-making
Motion
Creation (also known as generative AI)
Sentience
Delivery
Hardware appliance
Licensed software
Artificial intelligence as a service
Companies
Leading AI adopters in sports
Leading AI vendors
Specialist AI vendors in sports
Sector Scorecard
Sporting federations sector scorecard
Who’s who
Thematic screen
Glossary
Further Reading
GlobalData reports
Our Thematic Research Methodology
About GlobalData
Contact Us
List of Tables
Table 1: Key challenges facing the sports sector.
Table 2: Mergers and acquisitions
Table 3: Leading AI adopters in sports
Table 4: Leading AI vendors
Table 5: Specialist AI vendors in sports
Table 6: Glossary
Table 7: GlobalData reports
List of Figures
Figure 1: Key players in AI
Figure 2: AI-related mentions in sports on social media, July 2020 – July 2023
Figure 3: Thematic impact assessment
Figure 4: An example of the Bundesliga Match Facts
Figure 5: Wicket’s facial ticketing system
Figure 6: The AI story
Figure 7: Global AI revenue will reach $909 billion by 2030
Figure 8: Lululemon, an athletic apparel retailer, has filed the most patents in the AI theme in the sports sector
Figure 9: Ice hockey was the most discussed sport in the AI theme on social media between July 2020 and July 2023
Figure 10: The AI value chain - An overview
Figure 11: The AI value chain - Hardware - semiconductors
Figure 12: The AI value chain - Hardware - cameras
Figure 13: The AI value chain - Hardware – sensors and lasers
Figure 14: The AI value chain - Hardware – servers
Figure 15: The AI value chain - Hardware – storage devices
Figure 16: The AI value chain - Hardware – networking equipment
Figure 17: The AI value chain - Hardware – edge equipment
Figure 18: The AI value chain - Data management
Figure 19: The AI value chain - Foundational AI – data science
Figure 20: The AI value chain - Foundational AI – machine learning
Figure 21: The AI value chain - Foundational AI – 3D modeling
Figure 22: The AI value chain - Foundational AI – knowledge representation and reasoning
Figure 23: The AI value chain - Foundational AI – visualization engines
Figure 24: The AI value chain - Advanced AI capabilities– human-AI interaction
Figure 25: The AI value chain - Advanced AI capabilities– decision-making
Figure 26: The AI value chain - Advanced AI capabilities– motion
Figure 27: The AI value chain - Advanced AI capabilities– creation
Figure 28: The AI value chain - Advanced AI capabilities– sentience
Figure 29: The AI value chain - Delivery
Figure 30: Who does what in the sporting federation space?
Figure 31: Thematic screen
Figure 32: Our five-step approach for generating a sector scorecard

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings