
Artificial Intelligence (AI) in Energy - Thematic Intelligence
Description
Artificial Intelligence (AI) in Energy - Thematic Intelligence
Summary
AI is driving measurable improvements in renewable energy forecasting, grid operations and optimization, the coordination of distributed energy assets, and demand-side management. It will play a major role in enhancing asset optimization and customer segmentation. Implementing AI in the energy sector will benefit resource management, failure prevention, and predictive analytics for renewables. GlobalData anticipates that the total AI market will be worth $909 billion in 2030, up from $81 billion in 2022.
The energy sector has historically been slow to adopt conversational platforms. Recent advancements in generative AI hold promise for elevating the existing AI framework within the energy sector. Large language models (LLMs) not only analyze data but also extract actionable insights to inform decision-making and strategy development. While the technology can resolve the sector's “black box” perception of AI, it glosses over the problem instead of addressing it. Investments in explainable AI will be required to overcome this issue fully.
The power industry is investing heavily in AI and machine learning (ML) to deliver the necessary solutions, such as sensor-connected power plants and smart grids to balance electricity supply and demand. AI technology can process large quantities of data, predict the likely outcomes, and assist in making decisions that will impact emission levels. The energy sector’s inherent lack of innovation is a crucial hurdle for incorporating AI-based solutions. Energy equipment such as power stations and oil rigs typically have lifespans extending decades. This makes it difficult to ensure seamless compatibility and communication between existing infrastructure and AI solutions.
Scope
- This report provides an overview of the AI theme. The detailed value chain comprises of four segments: human AI interaction, decision making AI, motion and creation. Leading and challenging vendors are identified across both segments.
- It identifies energy challenges, such as an aging workforce, the energy transition, energy security, industry consolidation, and a lack of innovation. The impact section identifies how AI addresses these challenges.
- It includes five case studies, outlining market-leading use cases of AI in energy to solve specific challenges.
- It contains comprehensive industry analysis, including forecasts for AI revenues to 2030, and insight from GlobalData’s Job Analytics, Patent Analytics, and Company Filing Analytics databases. It contains details of M&A deals driven by the AI theme, and a timeline highlighting AI milestones and events in energy.
- The report has extensive coverage and analysis of relevant companies’ positions in the AI theme. This includes leading adopters, vendors, and specialist AI vendors in energy.
- It includes GlobalData’s unique thematic scorecard that ranks energy companies according to their positioning in the ten themes most important to the sector, of which AI is one.
- This report will help you to understand AI and its potential impact on the energy sector.
- Benchmark your company against your competitors, by comparing how prepared companies in the energy sector are for AI disruption.
- Identify and differentiate between the leading AI vendors and formulate an adoption plan for your company.
- Position yourself for future success by investing in the right AI technologies. Cut through the noise with GlobalData’s priority ratings for each AI technology for each segment of the sector (upstream, midstream, downstream, equipment manufacture and services, engineering, procurement, construction, generation, transmission and distribution, and end-user).
- Develop relevant and credible sales and marketing messages for energy companies by understanding key sector challenges and where AI use cases are most useful.
- Identify attractive investment targets by understanding which companies are most advanced in the themes that will determine future success in the energy sector.
Table of Contents
95 Pages
- Executive Summary
- Players
- Energy Challenges
- Impact Assessment
- The impact of AI on power
- Equipment manufacture, engineering, procurement, and construction
- Generation
- Transmission and distribution
- End-user
- The impact of AI on oil and gas
- Upstream
- Midstream
- Downstream
- The impact of AI on energy challenges
- How AI addresses the challenge of energy transition
- How AI addresses the challenge of energy security
- How AI addresses the challenge of an aging workforce
- How AI addresses the challenge of industry consolidation
- Case Studies
- Shell and SparkCognition are using generative AI for subsurface exploration
- DeepMind trains AI to control the EPFL’s nuclear fusion process
- ABB and Microsoft bring generative AI to industrial applications
- Google and UK Power Networks develop AI-powered electricity cable map software
- Tatu – Petrobras’ AI-powered supercomputer for exploration and production
- AI Timeline
- Market Size and Growth Forecasts
- Signals
- Mergers and acquisitions
- Patent trends
- Company filings trends
- Hiring trends
- AI Value Chain
- Hardware
- Semiconductors
- Cameras
- Sensors and lasers
- Servers
- Storage devices
- Networking equipment
- Edge equipment
- Data management
- Data governance and security
- Data storage
- Data processing
- Data aggregation
- Data integration
- Foundational AI
- Data science
- Machine learning
- 3D modeling
- Knowledge representation and reasoning
- Visualization engines
- Advanced AI capabilities
- Human-AI interaction
- Decision-making
- Motion
- Creation (also known as generative AI)
- Sentience
- Delivery
- Hardware appliance
- Licensed software
- Artificial intelligence as a service
- Companies
- Leading AI adopters in energy
- Leading AI vendors
- Specialist AI vendors in energy
- Sector Scorecard
- Power utilities sector scorecard
- Who’s who
- Thematic screen
- Valuation screen
- Risk screen
- Integrated oil & gas sector scorecard
- Who’s who
- Thematic screen
- Valuation screen
- Risk screen
- Industrial automation sector scorecard
- Who’s who
- Thematic screen
- Valuation screen
- Risk screen
- Glossary
- Further Reading
- GlobalData reports
- Our Thematic Research Methodology
- About GlobalData
- Contact Us
- List of Tables
- Table 1: key challenges facing the energy sector.
- Table 2: Mergers and acquisitions
- Table 3: Leading AI adopters in energy
- Table 4: Leading AI vendors
- Table 5: Specialist AI vendors in energy
- Table 6: Glossary
- Table 7: GlobalData reports
- List of Figures
- Figure 1: Key players in the AI value chain
- Figure 2: Half of poll respondents claim they only partially understand AI
- Figure 3: AI has potent8ial use cases across the entire energy value chain
- Figure 4: AI is being used to drive measurable improvements across the power value chain
- Figure 5: GE’s Bently Nevada 3500 vibration monitoring system
- Figure 6: Power companies are using AI across different power sources to manage and maintain assets
- Figure 7: Automated home energy systems coordinate household assets to optimize energy consumption
- Figure 8: AI is being used to enhance the extraction, transport, storage, and sale of hydrocarbons
- Figure 9: Oil and gas companies are using AI in upstream activities to optimize hydrocarbon production
- Figure 10: AI can be used to analyze the environment surrounding renewables equipment and forecast supply
- Figure 11: Most energy companies use smart monitoring to accelerate the energy transition
- Figure 12: Incumbent energy companies have more discretionary spending to direct into AI investments
- Figure 13: The variable configuration tokamak (TCV) at EPFL and the governing artificial neutral network
- Figure 14: A prototype model of the Genix Copilot user interface
- Figure 15: Tatu is installed in 11 cabinets
- Figure 16: The AI story
- Figure 17: Global AI revenue will grow at a CAGR of 35.2% between 2022 and 2030
- Figure 18: AI-related patents in the energy sector grew exponentially between 2010 and 2022
- Figure 19: China leads AI-related patent activity in the energy sector by a wide margin
- Figure 20: AI-related filing mentions across the energy sector peaked in 2021
- Figure 21: Job vacancies across the energy sector have increased steadily since Q2 2020
- Figure 22: Siemens leads AI-related hiring in energy
- Figure 23: The AI value chain
- Figure 24: The AI value chain - Hardware - semiconductors
- Figure 25: The AI value chain - Hardware - cameras
- Figure 26: The AI value chain - Hardware – sensors and lasers
- Figure 27: The AI value chain - Hardware – servers
- Figure 28: The AI value chain - Hardware – storage devices
- Figure 29: The AI value chain - Hardware – networking equipment
- Figure 30: The AI value chain - Hardware – edge equipment
- Figure 31: The AI value chain - Data management
- Figure 32: The AI value chain - Foundational AI – data science
- Figure 33: The AI value chain - Foundational AI – machine learning
- Figure 34: The AI value chain - Foundational AI – 3D modeling
- Figure 35: The AI value chain - Foundational AI – knowledge representation and reasoning
- Figure 36: The AI value chain - Foundational AI – visualization engines
- Figure 37: The AI value chain - Advanced AI capabilities– human-AI interaction
- Figure 38: The AI value chain - Advanced AI capabilities– decision-making
- Figure 39: The AI value chain - Advanced AI capabilities– motion
- Figure 40: The AI value chain - Advanced AI capabilities– creation
- Figure 41: The AI value chain - Advanced AI capabilities– sentience
- Figure 42: The AI value chain - Delivery
- Figure 43: Who does what in the power utilities space?
- Figure 44: Thematic screen - Power utilities sector scorecard
- Figure 45: Valuation screen - Power utilities sector scorecard
- Figure 46: Risk screen - Power utilities sector scorecard
- Figure 47: Who does what in the integrated oil & gas space?
- Figure 48: Thematic screen - Integrated oil & gas sector scorecard
- Figure 49: Valuation screen - Integrated oil & gas sector scorecard
- Figure 50: Risk screen - Integrated oil & gas sector scorecard
- Figure 51: Who does what in the industrial automation space?
- Figure 52: Thematic screen - Industrial automation sector scorecard
- Figure 53: Valuation screen - Industrial automation sector scorecard
- Figure 54: Risk screen - Industrial automation sector scorecard
- Figure 55: Our five-step approach for generating a sector scorecard
Pricing
Currency Rates
Questions or Comments?
Our team has the ability to search within reports to verify it suits your needs. We can also help maximize your budget by finding sections of reports you can purchase.