Artificial Intelligence (AI) in Energy - Thematic Intelligence
Summary
AI is driving measurable improvements in renewable energy forecasting, grid operations and optimization, the coordination of distributed energy assets, and demand-side management. It will play a major role in enhancing asset optimization and customer segmentation. Implementing AI in the energy sector will benefit resource management, failure prevention, and predictive analytics for renewables. GlobalData anticipates that the total AI market will be worth $909 billion in 2030, up from $81 billion in 2022.
The energy sector has historically been slow to adopt conversational platforms. Recent advancements in generative AI hold promise for elevating the existing AI framework within the energy sector. Large language models (LLMs) not only analyze data but also extract actionable insights to inform decision-making and strategy development. While the technology can resolve the sector's “black box” perception of AI, it glosses over the problem instead of addressing it. Investments in explainable AI will be required to overcome this issue fully.
The power industry is investing heavily in AI and machine learning (ML) to deliver the necessary solutions, such as sensor-connected power plants and smart grids to balance electricity supply and demand. AI technology can process large quantities of data, predict the likely outcomes, and assist in making decisions that will impact emission levels. The energy sector’s inherent lack of innovation is a crucial hurdle for incorporating AI-based solutions. Energy equipment such as power stations and oil rigs typically have lifespans extending decades. This makes it difficult to ensure seamless compatibility and communication between existing infrastructure and AI solutions.
Scope
This report provides an overview of the AI theme. The detailed value chain comprises of four segments: human AI interaction, decision making AI, motion and creation. Leading and challenging vendors are identified across both segments.
It identifies energy challenges, such as an aging workforce, the energy transition, energy security, industry consolidation, and a lack of innovation. The impact section identifies how AI addresses these challenges.
It includes five case studies, outlining market-leading use cases of AI in energy to solve specific challenges.
It contains comprehensive industry analysis, including forecasts for AI revenues to 2030, and insight from GlobalData’s Job Analytics, Patent Analytics, and Company Filing Analytics databases. It contains details of M&A deals driven by the AI theme, and a timeline highlighting AI milestones and events in energy.
The report has extensive coverage and analysis of relevant companies’ positions in the AI theme. This includes leading adopters, vendors, and specialist AI vendors in energy.
It includes GlobalData’s unique thematic scorecard that ranks energy companies according to their positioning in the ten themes most important to the sector, of which AI is one.
Reasons to Buy
This report will help you to understand AI and its potential impact on the energy sector.
Benchmark your company against your competitors, by comparing how prepared companies in the energy sector are for AI disruption.
Identify and differentiate between the leading AI vendors and formulate an adoption plan for your company.
Position yourself for future success by investing in the right AI technologies. Cut through the noise with GlobalData’s priority ratings for each AI technology for each segment of the sector (upstream, midstream, downstream, equipment manufacture and services, engineering, procurement, construction, generation, transmission and distribution, and end-user).
Develop relevant and credible sales and marketing messages for energy companies by understanding key sector challenges and where AI use cases are most useful.
Identify attractive investment targets by understanding which companies are most advanced in the themes that will determine future success in the energy sector.
Executive Summary
Players
Energy Challenges
Impact Assessment
The impact of AI on power
Equipment manufacture, engineering, procurement, and construction
Generation
Transmission and distribution
End-user
The impact of AI on oil and gas
Upstream
Midstream
Downstream
The impact of AI on energy challenges
How AI addresses the challenge of energy transition
How AI addresses the challenge of energy security
How AI addresses the challenge of an aging workforce
How AI addresses the challenge of industry consolidation
Case Studies
Shell and SparkCognition are using generative AI for subsurface exploration
DeepMind trains AI to control the EPFL’s nuclear fusion process
ABB and Microsoft bring generative AI to industrial applications
Google and UK Power Networks develop AI-powered electricity cable map software
Tatu – Petrobras’ AI-powered supercomputer for exploration and production
AI Timeline
Market Size and Growth Forecasts
Signals
Mergers and acquisitions
Patent trends
Company filings trends
Hiring trends
AI Value Chain
Hardware
Semiconductors
Cameras
Sensors and lasers
Servers
Storage devices
Networking equipment
Edge equipment
Data management
Data governance and security
Data storage
Data processing
Data aggregation
Data integration
Foundational AI
Data science
Machine learning
3D modeling
Knowledge representation and reasoning
Visualization engines
Advanced AI capabilities
Human-AI interaction
Decision-making
Motion
Creation (also known as generative AI)
Sentience
Delivery
Hardware appliance
Licensed software
Artificial intelligence as a service
Companies
Leading AI adopters in energy
Leading AI vendors
Specialist AI vendors in energy
Sector Scorecard
Power utilities sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Integrated oil & gas sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Industrial automation sector scorecard
Who’s who
Thematic screen
Valuation screen
Risk screen
Glossary
Further Reading
GlobalData reports
Our Thematic Research Methodology
About GlobalData
Contact Us
List of Tables
Table 1: key challenges facing the energy sector.
Table 2: Mergers and acquisitions
Table 3: Leading AI adopters in energy
Table 4: Leading AI vendors
Table 5: Specialist AI vendors in energy
Table 6: Glossary
Table 7: GlobalData reports
List of Figures
Figure 1: Key players in the AI value chain
Figure 2: Half of poll respondents claim they only partially understand AI
Figure 3: AI has potent8ial use cases across the entire energy value chain
Figure 4: AI is being used to drive measurable improvements across the power value chain
Figure 5: GE’s Bently Nevada 3500 vibration monitoring system
Figure 6: Power companies are using AI across different power sources to manage and maintain assets
Figure 7: Automated home energy systems coordinate household assets to optimize energy consumption
Figure 8: AI is being used to enhance the extraction, transport, storage, and sale of hydrocarbons
Figure 9: Oil and gas companies are using AI in upstream activities to optimize hydrocarbon production
Figure 10: AI can be used to analyze the environment surrounding renewables equipment and forecast supply
Figure 11: Most energy companies use smart monitoring to accelerate the energy transition
Figure 12: Incumbent energy companies have more discretionary spending to direct into AI investments
Figure 13: The variable configuration tokamak (TCV) at EPFL and the governing artificial neutral network
Figure 14: A prototype model of the Genix Copilot user interface
Figure 15: Tatu is installed in 11 cabinets
Figure 16: The AI story
Figure 17: Global AI revenue will grow at a CAGR of 35.2% between 2022 and 2030
Figure 18: AI-related patents in the energy sector grew exponentially between 2010 and 2022
Figure 19: China leads AI-related patent activity in the energy sector by a wide margin
Figure 20: AI-related filing mentions across the energy sector peaked in 2021
Figure 21: Job vacancies across the energy sector have increased steadily since Q2 2020
Figure 22: Siemens leads AI-related hiring in energy
Figure 23: The AI value chain
Figure 24: The AI value chain - Hardware - semiconductors
Figure 25: The AI value chain - Hardware - cameras
Figure 26: The AI value chain - Hardware – sensors and lasers
Figure 27: The AI value chain - Hardware – servers
Figure 28: The AI value chain - Hardware – storage devices
Figure 29: The AI value chain - Hardware – networking equipment
Figure 30: The AI value chain - Hardware – edge equipment
Figure 31: The AI value chain - Data management
Figure 32: The AI value chain - Foundational AI – data science
Figure 33: The AI value chain - Foundational AI – machine learning
Figure 34: The AI value chain - Foundational AI – 3D modeling
Figure 35: The AI value chain - Foundational AI – knowledge representation and reasoning
Figure 36: The AI value chain - Foundational AI – visualization engines
Figure 37: The AI value chain - Advanced AI capabilities– human-AI interaction
Figure 38: The AI value chain - Advanced AI capabilities– decision-making
Figure 39: The AI value chain - Advanced AI capabilities– motion
Figure 40: The AI value chain - Advanced AI capabilities– creation
Figure 41: The AI value chain - Advanced AI capabilities– sentience
Figure 42: The AI value chain - Delivery
Figure 43: Who does what in the power utilities space?
Figure 44: Thematic screen - Power utilities sector scorecard
Figure 45: Valuation screen - Power utilities sector scorecard
Figure 46: Risk screen - Power utilities sector scorecard
Figure 47: Who does what in the integrated oil & gas space?