Artificial Intelligence (AI) in Drug Discovery - Thematic Research

Artificial Intelligence (AI) in Drug Discovery - Thematic Research

Summary

In recent years, driven by the COVID-19 pandemic, the pharma industry has undergone increased levels of digital transformation. The availability of ultra-large datasets and technological advances has led to more interest in the use of artificial intelligence (AI) and big data analytics across the pharma value chain, from drug discovery and clinical trial design, right through to sales and marketing.

Drug R&D is an incredibly expensive and time-consuming process. And while the inception of computer-aided drug design (CADD) 40 years ago has significantly enhanced drug discovery, there is still a low success rate, with just 10% of candidates making it into clinical development.

The ever-growing amount of biomedical data requires more advanced technologies and computing power to support faster and more efficient hit generation. AI is being increasingly used to enhance CADD methods, as it can rapidly assimilate big data. It can be used to quickly identify and validate drug targets, screen billions of potential molecules for hit generation and optimization, and predict patient response of treatment. This can significantly reduce the time and cost to get a drug to market, particularly in areas of unmet need such as rare diseases or new antibiotics. However, AI will face challenges such as data quality, education and overcoming hype, and skills shortages.

Over the past 3-4 years, there has been increased interest in the use of AI in drug discovery, as witnessed by the emergence of an ever-growing number of start-ups operating in this area, increasing number of drug discovery partnerships, and record levels of investment. While most drugs developed using AI are in early stages of development, there have been some recent major milestones, including the first drug developed by AI to enter clinical trials and the repurposing of an already marketed drug to treat COVID-19.

Scope

  • Key players in the AI in drug discovery space: this includes specialist AI vendors that partner with pharma companies to support their drug discovery efforts, such as Insilico Medicine, Atomwise, Recursion Pharmaceuticals, and Exscientia, leading technology companies such as Alphabet, IBM, and Microsoft, and adopters of AI in drug discovery, which includes big pharma as well as other start-ups and small biotech companies.
  • Thematic briefing: this includes a definition of AI and how it (predominantly machine learning) is being applied to drug discovery, such as identifying drug targets, virtual screening of compounds, de novo drug design, drug repurposing, and identification of treatment response biomarkers.
  • Trends: This section looks at key trends impacting the AI in drug discovery space. Industry trends include the impact of COVID-19 on digital transformation in pharma, rising cost of R&D, availability of ultra-large biomedical datasets, companies building in-house AI capabilities, formation of industry AI consortia, and use of AI in precision and personalized medicine. Technology trends include the role of technology giants in drug discovery, big data, cloud, and quantum computing. Macroeconomic trends include skills shortages in AI, and an increase in the number of deals related to AI in drug discovery including partnerships and funding. Regulatory trends include ICMRA recommendations to support regulatory bodies with challenges posed by using AI to develop drugs.
  • Industry analysis with a detailed analysis of drugs discovered using AI from GlobalData's Drugs Database, as well a comprehensive deals section. It also includes case studies, survey and poll data, hiring trends, and social media analysis.
  • Value chain which looks at different uses of AI in drug discovery, including identification and validation of drug targets, virtual screening of compounds and de novo drug design, drug repurposing, and identification of treatment response biomarkers.
  • Companies: Examples of companies in the AI in drug discovery space including leading AI technology vendors, specialist AI vendors, and adopters of AI in drug discovery.
Reasons to Buy
  • See who the leading players are in the AI in drug discovery space.
  • See how the competitive landscape is evolving, with a review of company activity including strategic partnerships and funding deals, as well as mergers and acquisitions (M&A).
  • See what trends are driving the use of AI in drug discovery.
  • See an analysis of drugs discovered by AI, including by company, phase of development, therapy area, and molecule type.


  • Executive Summary
  • Players
    • Table Figure 1: Examples of leading players in AI in drug discovery and where do they sit in the value chain?
  • Technology Briefing
    • Table Figure 2: Key components of machine learning
  • Trends
    • Healthcare trends
      • Table Healthcare trends impacting AI in drug discovery
    • Technology trends
      • Table Technology trends impacting AI in drug discovery
    • Macroeconomic trends
      • Table Macroeconomic trends impacting AI in drug discovery
    • Regulatory trends
      • Table Regulatory trends impacting AI in drug discovery
  • Industry Analysis
    • Market size and growth forecasts
      • Table Figure 3: Global AI platform revenue in pharma, medical, and healthcare, 2019–24
    • Analysis of drugs discovered using AI
      • Table Figure 4: Top companies by number of drugs developed using AI-based technologies
      • Table Figure 5: Breakdown of drugs by highest phase of development
      • Table Figure 6: Breakdown of drugs by therapy area
      • Table Figure 7: Breakdown of drugs by molecule type
      • Table Examples of drugs in clinical development by highest phase of development
    • Survey data on the adoption of AI in pharma
      • GlobalData’s Smart Pharma Survey 2021
        • Table Figure 8: Role of AI in optimizing drug discovery and development
        • Table Figure 9: Current and expected use of AI in drug discovery and development
        • Table Figure 10: Most pharma companies will use AI vendors to implement the technology across their value chain
        • Table Figure 11: Impact of the COVID-19 pandemic on investment in AI
      • GlobalData’s Digital Transformation and Emerging Technology in the Healthcare Industry Survey, 2021
        • Table Figure 12: Technologies pharma is prioritizing for current investments
        • Table Figure 13: Investment in emerging technologies over the next two years
      • Poll data on timeline of peak AI use in drug discovery and development
        • Table Figure 14: Use of AI in drug discovery and development is expected to peak in more than nine years
    • Deals
      • Strategic alliances
        • Table Figure 15: Number of AI-based drug discovery strategic alliances has increased since 2015
        • Table Figure 16: Top AI vendors by number of deals, 2015–22
        • Table Figure 17: Top pharma companies by number of AI drug discovery deals, 2015–22
        • Table Top 20 pharma partnerships in AI-based drug discovery by value
      • Funding
        • Table Figure 18: Number and value of AI-based drug discovery VC deals has increased since 2015
        • Table Examples of top VC deals associated with AI in drug discovery
      • M&A
        • Table Examples of M&A deals associated with AI in drug discovery
    • Case studies
      • Sumitomo Pharma uses AI to identify target molecules
      • BenevolentAI used its AI-based platform to repurpose Eli Lilly’s baricitinib as a treatment for COVID-19
      • Recursion uses AI methods to speed up search for drugs to treat fibrotic diseases
      • Cyclica uses its AI platform to identify on-target and off-target effects of compounds
      • Alto Neuroscience utilizes its AI platform to develop brain biomarkers to provide personalized treatments for mental health conditions
      • Oncocross uses its RAPTOR AI to accelerate drug screening in rare diseases
      • Lantern Pharma uses AI to repurpose molecules into personalized oncology drugs
      • GSK was an early pioneer in setting up in-house AI capabilities
      • Alphabet moves into drug discovery with its AI platform AlphaFold to predict protein structures
    • Hiring trends
      • Table Figure 19: AI job postings in pharma, 2019–22
    • Company filings trends
      • Table Figure 20: Number of AI mentions in company filings, 2016–22
    • Social media trends
      • Table Figure 21: Top influencer trends related to AI
      • Table Figure 22: Top influencer posts related to AI and drug discovery, 2019–22
  • Value Chain
    • Table Figure 23: AI in drug discovery value chain
    • Target identification and validation
      • Table Examples of publicly available platforms and databases used for target identification
      • Table Figure 24: Examples of leaders and challengers in target identification and validation
      • Table Examples of AI technologies used for target identification
    • Generation of molecule leads/de novo drug design
      • Table Figure 25: Computer-aided drug discovery methods
      • Table Figure 26: Examples of leaders and challengers in molecule lead generation and de novo drug design
      • Table Examples of companies with technology for generation of molecule leads and de novo drug design
    • Drug repurposing
      • Table Figure 27: Examples of leaders and challengers in drug repurposing
    • Response biomarker discovery
      • Table Figure 28: Examples of leaders and challengers in response biomarker discovery
  • Companies
    • Leading AI technology vendors
      • Table Leading AI technology vendors
    • Specialist AI vendors in drug discovery
      • Table Specialist AI vendors in drug discovery
    • Leading pharma adopters of AI in drug discovery
      • Table Leading pharma adopters of AI in drug discovery
  • Drug Development Scorecard
    • Who’s who
      • Table Figure 29: Who does what in the drug development space?
    • Thematic screen
      • Table Figure 30: Thematic screen
    • Valuation screen
      • Table Figure 31: Valuation screen
  • Abbreviations
  • Further Reading
    • Related Reports
    • Bibliography
  • About the Authors
    • Digital Healthcare Analyst
    • Senior Director of Thematic Analysis
    • Global Head and EVP of Healthcare Operations and Strategy
  • Our thematic research methodology
    • Table Figure 32: Our five-step approach for generating a sector scorecard
  • About GlobalData
  • Contact Us

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings