Artificial Intelligence (AI) in Agriculture - Thematic Intelligence
Summary
Artificial intelligence (AI) refers to software-based systems that use data inputs to make decisions on their own. With recent progress in machine learning (ML) on the back of improved algorithms (e.g., OpenAI’s GPT-3) and increasing computing power, AI is now able to solve real-life problems.
GlobalData estimates the total AI market will grow from $81 billion in 2022 to $909 billion by 2030, growing at a compound annual growth rate (CAGR) of 35% over the period.
The report outlines the Impact of AI on the Agriculture Sector. AI will help farmers deliver precision agriculture solutions.
Precision agriculture requires a vast amount of data from onsite sensors and satellite imagery. This data can be quickly analysed using AI. Ultimately, this will help farmers make good, timely decisions about their crop or livestock management.
AI will also help in various agricultural management techniques that observe, measure, and respond to crops' inter- and intra-field variability for improved resource use and efficiency.
AI can further address the extreme variability inherent in the agricultural sector, exacerbated by climate change and geopolitical events. For example, it can be used to optimize farm planning, assess climate risks, handle disease management, and much more.
The recent impact of generative AI will also benefit the agriculture industry as it can be used from the operation of smart chatbots to the discovery of new seed variations.
Scope
The report provides a detailed analysis of the key challenges for the agriculture industry including climate change, geopolitics, disease, pressure on limited resources, environmental degradation, and much more. Along with the impact of AI in agriculture sector.
The report includes Market Size and Growth Forecasts for the AI market, split into its key platforms and services.
Evaluation of the Signals, AI value chain and Companies, which will help understand where to invest, explore, or ignore - for agriculture players.
The report identifies leading adopters of AI in the agriculture sector, the top specialist vendors for the AI in the agriculture sector, and cross-sector AI vendors.
Reasons to Buy
Position yourself for success by understanding the ways in which AI can help to solve the major challenges for the agriculture industry.
Identify the leading and specialist vendors of AI solutions for the agriculture industry.
Discover what each vendor offers and who some of their existing clients are.
Quickly identify attractive investment targets in the agriculture industry by understanding which companies are most likely to be winners in the future based on our thematic scorecard.
Gain a competitive advantage in the agriculture industry over your competitors by understanding the potential of AI solutions in the future.
Executive Summary
Players
Agriculture Challenges
The Green Revolution’s second act
The Impact of AI on Agriculture
How AI helps tackle the challenges of climate change and environmental degradation
How AI helps resolve the challenge of geopolitics and market transparency
How AI helps resolve the challenge of land and resource availability
How AI helps resolve the challenge of disease
How AI helps resolve the challenge of spoilage and waste
Case Studies
AGCO deploys a conversational platform
Bayer’s innovative use of AI for plant breeding
Cargill uses AI to improve poultry flock management
CNH Industrials invests in California-based start-up for smart agriculture equipment
Syngenta partners with PEAT for AI powered diagnostics
AI Timeline
Market Size and Growth Forecasts
Signals
Mergers and acquisitions – all sectors
Mergers and acquisitions in the agriculture sector
Patent trends
Company filings trends
Hiring trends
AI Value Chain
Hardware
Semiconductors
Cameras
Sensors and lasers
Servers
Storage devices
Networking equipment
Edge equipment
Data management
Data governance and security
Data storage
Data processing
Data aggregation
Data integration
Foundational AI
Data science
Machine learning
3D modeling
Knowledge representation and reasoning
Visualization engines
Advanced AI capabilities
Human-AI interaction
Decision-making
Motion
Creation (also known as generative AI)
Sentience
Delivery
Hardware appliance
Licensed software
Artificial intelligence as a service
Companies
Leading AI adopters in agriculture
Leading AI vendors
Specialist AI vendors in agriculture
Glossary
Further Reading
GlobalData reports
Our Thematic Research Methodology
About GlobalData
Contact Us
List of Tables
Table 1: Key challenges facing the agricultural sector
Table 2: Mergers and acquisitions – all sectors
Table 3: Mergers and acquisitions in the agriculture sector
Table 4: Leading AI adopters in agriculture
Table 5: Leading AI vendors
Table 6: Specialist AI vendors in agriculture
Table 7: Glossary
Table 8: GlobalData reports
List of Figures
Figure 1: Key players in the AI value chain
Figure 2: The agricultural land area has declined since 2010, but the undernourished population has grown
Figure 3: The share of internet users was significantly higher in urban areas than in rural areas in 2020
Figure 4: AI is important across the entire agriculture value chain
Figure 5: The conversational platform noticeably improved CX
Figure 6: Bayer offers farmers thousands of seed varieties
Figure 7: Cargill uses AI decision-making to secure flock health
Figure 8: CNH Industrials invests in computer vision and AI motion
Figure 9: Crop diseases, deficiencies, or pests can be diagnosed in under five seconds
Figure 10: The AI story
Figure 11: By 2030, global AI market revenue will reach $909 billion
Figure 12: The number of AI patents in the agriculture sector grew by 467% between April 2021 and April 2022
Figure 13: Agriculture companies regularly mention AI in their filings
Figure 14: AI-related jobs continue to increase in the agriculture sector
Figure 15: The AI value chain - An overview
Figure 16: The AI value chain - Hardware - semiconductors
Figure 17: The AI value chain - Hardware - cameras
Figure 18: The AI value chain - Hardware – sensors and lasers
Figure 19: The AI value chain - Hardware – servers
Figure 20: The AI value chain - Hardware – storage devices
Figure 21: The AI value chain - Hardware – networking equipment
Figure 22: The AI value chain - Hardware – edge equipment
Figure 23: The AI value chain - Data management
Figure 24: The AI value chain - Foundational AI – data science
Figure 25: The AI value chain - Foundational AI – machine learning
Figure 26: The AI value chain - Foundational AI – 3D modeling
Figure 27: The AI value chain - Foundational AI – knowledge representation and reasoning
Figure 28: The AI value chain - Foundational AI – visualization engines
Figure 29: The AI value chain - Advanced AI capabilities– human-AI interaction
Figure 30: The AI value chain - Advanced AI capabilities– decision-making
Figure 31: The AI value chain - Advanced AI capabilities– motion
Figure 32: The AI value chain - Advanced AI capabilities– creation
Figure 33: The AI value chain - Advanced AI capabilities– sentience
Figure 34: The AI value chain - Delivery
Figure 35: Our five-step approach for generating a sector scorecard