Deep Learning Market Analysis And Forecast To 2032: By Component (Hardware, Software, Services), Application (Image Recognition, Voice Recognition, Video Surveillance & Diagnostics, Data Mining), End-User (Automotive, Aerospace & Defense, Healthcare, Manu

Deep Learning Market Analysis And Forecast To 2032: By Component (Hardware, Software, Services), Application (Image Recognition, Voice Recognition, Video Surveillance & Diagnostics, Data Mining), End-User (Automotive, Aerospace & Defense, Healthcare, Manufacturing, Others), And Region

The global Deep Learning Market was valued at USD 47.3 Billion in 2022 and it is anticipated to grow up to USD 379.4 Billion by 2032, at a CAGR of 23.1% during the forecast period.

Deep learning is a subset of machine learning in artificial intelligence (AI) that has networks capable of learning unsupervised from data that is unstructured or unlabeled. Also known as deep neural learning or deep neural networks (DNNs), deep learning models are neural networks (algorithms used to simulate the workings of the human brain in order to recognize patterns) that can learn and make predictions on their own by analyzing data, finding patterns, and making decisions.
Global Deep Learning Market Scope and Report Structure
[table id=694 /]
Market Trends and Drivers
Deep learning technology has grown due to recent developments in neural network architecture and training algorithms, Graphics Processing Units (GPU), and the availability of a significant amount of data across sectors. The increasing adoption of robots, IoT, cybersecurity applications, industrial automation, and machine vision technology led to a large volume of data. This data can serve as a training module in deep learning algorithms, which help diagnose and test purposes. The deep learning algorithms learn from past experiences and create a consolidated data environment. The more data there is, the more accurate the results will be, and the data will be managed consistently.
Market Restraints and Challenges
There are a few key restraints and challenges in deep learning market. Firstly, the data requirements for deep learning are significantly higher than other machine learning methods, which can make it difficult to obtain the necessary data for training. Secondly, deep learning models can be very computationally intensive, which can make them difficult to train and deploy. Finally, deep learning models can be prone to overfitting, which means that they may not generalize well to new data.
Global Deep Learning Market Segmental Overview
The report analyses the global Deep Learning Market based on component, application, end-use, and region.

Global Deep Learning Market by Component

By component, the market is segmented into hardware, software, and services. The hardware segment held the largest revenue share of more than xx% in 2022. The Graphics Processing Unit (GPU) segment held the largest market share of around 57.3% in 2021. GPUs are the widely used hardware for improving training and classification processes in Computer Neural Networks (CNNs) as it holds high memory bandwidth and throughput. GPU provides better computational ability allowing the system to do multiple parallel processes. Multi-GPU enhances the deep learning performance by combining several GPUs in one computer. Moreover, it offers a fast and accurate computational ability to perform a broad set of tasks concurrently in real-time. Multi-GPU helps in object detection for the autonomous car. The system needs to perform a comprehensive set of tasks in quick successions, such as detecting obstacles, determining the boundary lines, and intersection detection. Several innovations are advancing deep learning. For instance, In May 2020, NEUCHIPS corporation announced the World's First Deep Learning Recommendation Model called RecAccelTM. This can perform 500,000 inferences per second.

Global Deep Learning Market by Application

By application, the Deep Learning Market is classified into Image Recognition, Voice Recognition, Video Surveillance & Diagnostics, and Data Mining. Image recognition held the largest market share of around xx% in 2022. Deep learning can be used in stock photography and video websites to make visual content discoverable for the user. The technology can be used in visual search, allowing users to search for similar images or products using a reference image. Moreover, the technology can be used in medical image analysis, facial recognition for security and surveillance, and image detection on social media analytics.

The increasing visual content on social media and the need for content modernization will drive the application of image recognition. For instance, in 2018, Instagram announced a new feature based on deep learning algorithms for describing photos with visual impairments. The feature automatically identifies the photo using image recognition technology and then reads its automated description of the photo. Also, in March 2021, Facebook developed a deep learning solution called SEER (Self-supERvised). This solution can autonomously work its way through the dataset and can learn from any random group of unlabeled images on the internet.

Global Deep Learning Market by End-user

Based on end-use. It is segmented into Automotive, Aerospace & Defense, Healthcare, Manufacturing, and Others. The automotive segment dominated with a revenue share of over xx% in 2022. The autonomous vehicle is a revolutionary technology that requires a massive amount of computation power. A DNN can rapidly help the autonomous vehicle perform various tasks without human interference. Autonomous vehicles are expected to gain momentum in the forthcoming years, and thus various startups and large companies are working on their development. Google Inc.; Uber Technologies, Inc.; and Tesla, Inc. are some prominent companies showing their capabilities in developing autonomous vehicles. For instance, in December 2019, Nvidia launched the NVIDIA DRIVE platform for autonomous vehicles.

Various investments are being made to enhance the use of deep learning in improving the features of the autonomous vehicle. For instance, in January 2022, Wayve, a London-based startup, raised USD 200 million. This will help the organizations create deep learning techniques to train and develop artificial intelligence, capable of complex driving situations.
Geographical Analysis of Global Deep Learning Market
Region-wise, it is studied across North America, Europe, Asia Pacific, and the Rest of the World. North America dominated the market with a revenue share of over xx% in 2022, which is attributed to increased investments in artificial intelligence and neural networks. The high adoption of image and pattern recognition in the region is expected to open new growth opportunities over the forecast period. Moreover, the region is one of the early adopters of advanced technologies, rendering organizations adopt deep learning capabilities at a faster pace. Furthermore, increased government support is expected to provide a positive impact on the growth of the industry in the region. The establishment of subcommittees on artificial intelligence and machine learning within the federal government is providing traction for the growth.

Europe has contributed significantly to the market growth as several new measures have been taken to support the artificial intelligence sector in the region to boost growth and deliver a digital economy. This, in turn, has offered considerable growth opportunities in the deep learning space. The U.K. is underpinning the technology to grow further in the areas of autonomous vehicles, smart devices, and cyber security.
Major Players in the Global Deep Learning Market
The key players in the Deep Learning Market  Advanced Micro Devices Inc., Amazon Web Services, Inc., Google LLC, IBM Corporation, Intel Corporation, Microsoft Corporation, NVIDIA Corporation, Qualcomm Technologies, Inc., Samsung, and Xilinx, among others.
COVID-19 Impact:
According to our deep learning industry analysis, deep learning has helped during the COVID-19 pandemic in aspects such as early disease diagnosing, fraud detection, and money laundering. Deep learning models enable researchers to handle enormous amounts of data thanks to increased inexpensive data storage capacities, the development of computers with powerful processors, and other computational advancements. According to recent studies, deep learning models have already been used to classify, predict, identify, and diagnose COVID-19 using medical imaging (such as X-ray images and CT scans). Deep learning has also helped with disease forecasting and tracking, social distance monitoring, and the development of drugs and vaccines (sometimes taking mutations/variants into account). In this way, deep learning assisted in saving a huge amount of money and saved millions of lives during the coronavirus outbreak.
Recent Developments:

In January 2022, Wayve, a London-based startup, raised USD 200 million. This will help the organizations create deep learning techniques to train and develop artificial intelligence, capable of complex driving situations.
In October 2020, NVIDIA AI and Microsoft Azure team worked together to improve the AI-powered grammar checker in Microsoft Word. The web version of Microsoft Word can now tap into NVIDIA Triton Inference Server, ONNX Runtime, and Microsoft Azure Machine Learning to provide this smart experience.
In December 2019, Nvidia launched the NVIDIA DRIVE platform for autonomous vehicles.
In December 2019, Intel Corp. acquired Habana Labs Ltd., an Israel-based startup working on deep learning algorithms for data center applications strengthening the AI capability of Intel Corporation
In November 2018, Amazon Web Services announced Amazon Elastic Inference, allowing users to add elastic GPU support, reducing deep learning costs by up to 75%.



Frequently Asked Questions
Q1. How big is the Deep Learning Market?

Ans. The global Deep Learning Market was valued at USD 47.3 Billion in 2022 and it is anticipated to grow up to USD 379.4 Billion by 2032, at a CAGR of 23.1% during the forecast period.

Q2. What is the Deep Learning Market growth rate?

Ans. The growth rate of the deep learning market is 23.1%

Q3. Which region holds a major market share for the market?

Ans. North America holds a major market share of the Deep Learning Market in 2022.

Q4. Which segment accounted for the largest Deep Learning Market share?

Ans. By end-use, the automotive segment accounted for the largest Deep Learning Market share.

Q5. Who are the key players in the kidney stones management market?

Ans. The global Deep Learning Market report includes players such  Advanced Micro Devices Inc., Amazon Web Services, Inc., Google LLC, IBM Corporation, Intel Corporation, Microsoft Corporation, NVIDIA Corporation, Qualcomm Technologies, Inc., Samsung, and Xilinx. among others.

Q6. What are the factors driving the Deep Learning Market growth?

Ans. The major factors driving the growth of the market are the rapid adoption of cloud-based technology across several industries is fueling the growth of the market.

Q7. What are the key growth strategies of Deep Learning Market players?

Ans. The key growth strategies of Deep Learning Market players are product launch and product approval.

Q8. Which region will provide more business opportunities for the Deep Learning Market during the forecast period?

Ans. The Asia-Pacific region will provide more business opportunities for the Deep Learning Market during the forecast period.

Please Note: This report will be delivered by publisher within 3-4 business days of order confirmation.


Chapter 1. Deep Learning Market Overview
1.1. Objectives of the Study
1.2. Market Definition and Research & Scope
1.3. Research Limitations
1.4. Research Methodologies
1.4.1. Secondary Research
1.4.2. Market Size Estimation Technique
1.4.3. Forecasting
1.4.4. Primary Research and Data Validation
Chapter 2. Executive Summary
2.1. Summary
2.2. Key Highlights of the Market
Chapter 3. Premium Insights on the Market
3.1. Market Attractiveness Analysis, By Region
3.2. Market Attractiveness Analysis, By Component
3.3. Market Attractiveness Analysis, By Application
3.4. Market Attractiveness Analysis, By End-user
Chapter 4. Deep Learning Market Outlook
4.1. Deep Learning Market Segmentation
4.2. Market Dynamics
4.2.1. Market Drivers
4.2.1.1. Driver 1
4.2.1.2. Driver 2
4.2.1.3. Driver 3
4.2.2. Market Restraints
4.2.2.1. Restraint 1
4.2.2.2. Restraint 2
4.2.3. Market Opportunities
4.2.3.1. Opportunity 1
4.2.3.2. Opportunity 2
4.3. Porter’s Five Forces Analysis
4.3.1. Threat of New Entrants
4.3.2. Threat of Substitutes
4.3.3. Bargaining Power of Buyers
4.3.4. Bargaining Power of Supplier
4.3.5. Competitive Rivalry
4.4. PESTLE Analysis
4.5. Value Chain Analysis
4.5.1. Raw Industry Vertical Suppliers
4.5.2. Manufacturers
4.5.3. Wholesalers and/or Retailers
4.6. Impact of COVID-19 on the Deep Learning Market
4.7. Impact of the Russia and Ukraine War on the Deep Learning Market
Chapter 5. Deep Learning Market By Component
5.1. Market Overview
5.2. Hardware
5.2.1. Key Market Trends & Opportunity Analysis
5.2.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
5.3. Software
5.3.1. Key Market Trends & Opportunity Analysis
5.3.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
5.4. Services
5.4.1. Key Market Trends & Opportunity Analysis
5.4.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
Chapter 6. Deep Learning Market By Application
6.1. Market Overview
6.2. Image Recognition
6.2.1. Market Trends & Opportunity Analysis
6.2.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
6.3. Voice Recognition
6.3.1. Market Trends & Opportunity Analysis
6.3.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
6.4. Video Surveillance & Diagnostics
6.4.1. Market Trends & Opportunity Analysis
6.4.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
6.5. Data Mining
6.5.1. Market Trends & Opportunity Analysis
6.5.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
Chapter 7. Deep Learning Market By End-user
7.1. Market Overview
7.2. Automotive
7.2.1. Key Market Trends & Opportunity Analysis
7.2.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
7.3. Aerospace & Defense
7.3.1. Key Market Trends & Opportunity Analysis
7.3.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
7.4. Healthcare
7.4.1. Key Market Trends & Opportunity Analysis
7.4.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
7.5. Manufacturing
7.5.1. Key Market Trends & Opportunity Analysis
7.5.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
7.6. Others
7.6.1. Key Market Trends & Opportunity Analysis
7.6.2. Market Size and Forecast, By Region, 2022-2032 ($Million)
Chapter 8. Flexible Endoscope Market, By Region
8.1. Overview
8.2. North America
8.2.1. Key Market Trends & Opportunity Analysis
8.2.2. North America Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.2.3. North America Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.2.4. North America Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.2.5. North America Deep Learning Market Size and Forecast by Country, 2022-2032, ($Million)
8.2.6. The U.S.
8.2.6.1. The U.S. Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.2.6.2. The U.S. Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.2.6.3. The U.S. Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.2.7. Canada
8.2.7.1. Canada Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.2.7.2. Canada Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.2.7.3. Canada Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.2.8. Mexico
8.2.8.1. Mexico Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.2.8.2. Mexico Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.2.8.3. Mexico Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3. Europe
8.3.1. Key Market Trends & Opportunity Analysis
8.3.2. Europe Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.3. Europe Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.4. Europe Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.5. Europe Deep Learning Market Size and Forecast by Country, 2022-2032, ($Million)
8.3.6. Germany
8.3.6.1. Germany Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.6.2. Germany Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.6.3. Germany Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.7. France
8.3.7.1. France Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.7.2. France Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.7.3. France Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.8. U.K.
8.3.8.1. U.K. Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.8.2. U.K. Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.8.3. U.K. Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.9. Spain
8.3.9.1. Spain Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.9.2. Spain Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.9.3. Spain Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.10. Italy
8.3.10.1. Italy Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.10.2. Italy Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.10.3. Italy Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.3.11. Rest of Europe
8.3.11.1. Rest of Europe Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.3.11.2. Rest of Europe Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.3.11.3. Rest of Europe Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.4. Asia-Pacific
8.4.1. Key Market Trends & Opportunity Analysis
8.4.2. Asia-Pacific Deep Learning Market Size and Forecast by Country, 2022-2032, ($Million)
8.4.3. Asia-Pacific Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.4. Asia-Pacific Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.5. Asia-Pacific Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.4.6. China
8.4.6.1. China Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.6.2. China Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.6.3. China Deep Learning Market Size and Forecast By Component Industry Vertical, 2022-2032, ($Million)
8.4.7. India
8.4.7.1. India Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.7.2. India Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.7.3. India Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.4.8. Japan
8.4.8.1. Japan Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.8.2. Japan Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.8.3. Japan Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.4.9. South Korea
8.4.9.1. South Korea Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.9.2. South Korea Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.9.3. South Korea Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.4.10. Rest of APAC
8.4.10.1. Rest of APAC Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.4.10.2. Rest of APAC Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.4.10.3. Rest of APAC Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.5. Rest of the World
8.5.1. Key Market Trends & Opportunity Analysis
8.5.2. Rest of the World Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.5.3. Rest of the World Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.5.4. Rest of the World Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.5.5. Rest of the World Deep Learning Market Size and Forecast by Country, 2022-2032, ($Million)
8.5.6. Latin America
8.5.6.1. Latin America Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.5.6.2. Latin America Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.5.6.3. Latin America Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.5.7. Middle East
8.5.7.1. Middle East Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.5.7.2. Middle East Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.5.7.3. Middle East Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
8.5.8. Africa
8.5.8.1. Africa Deep Learning Market Size and Forecast By Component, 2022-2032, ($Million)
8.5.8.2. Africa Deep Learning Market Size and Forecast By Application, 2022-2032, ($Million)
8.5.8.3. Africa Deep Learning Market Size and Forecast By End-user, 2022-2032, ($Million)
Chapter 9. Competitive Landscape
9.1. Market Overview
9.2. Market Share Analysis/Key Player Positioning
9.3. Vendor Benchmarking
9.4. Developmental Strategy Benchmarking
9.4.1. New Product Development
9.4.2. Product Launches
9.4.3. Business Expansions
9.4.4. Partnerships, Joint Ventures, and Collaborations
9.4.5. Mergers and Acquisitions
Chapter 10. Company Profiles
10.1. Advanced Micro Devices Inc.
10.1.1. Company Snapshot
10.1.2. Financial Performance
10.1.3. Product Offerings
10.1.4. Key Strategic Initiatives
10.1.5. SWOT Analysis
10.2. Amazon Web Services, Inc.
10.2.1. Company Snapshot
10.2.2. Financial Performance
10.2.3. Product Offerings
10.2.4. Key Strategic Initiatives
10.2.5. SWOT Analysis
10.3. Google LLC
10.3.1. Company Snapshot
10.3.2. Financial Performance
10.3.3. Product Offerings
10.3.4. Key Strategic Initiatives
10.3.5. SWOT Analysis
10.4. IBM Corporation
10.4.1. Company Snapshot
10.4.2. Financial Performance
10.4.3. Product Offerings
10.4.4. Key Strategic Initiatives
10.4.5. SWOT Analysis
10.5. Intel Corporation
10.5.1. Company Snapshot
10.5.2. Financial Performance
10.5.3. Product Offerings
10.5.4. Key Strategic Initiatives
10.5.5. SWOT Analysis
10.6. Microsoft Corporation
10.6.1. Company Snapshot
10.6.2. Financial Performance
10.6.3. Product Offerings
10.6.4. Key Strategic Initiatives
10.6.5. SWOT Analysis
10.7. NVIDIA Corporation
10.7.1. Company Snapshot
10.7.2. Financial Performance
10.7.3. Product Offerings
10.7.4. Key Strategic Initiatives
10.7.5. SWOT Analysis
10.8. Qualcomm Technologies, Inc.
10.8.1. Company Snapshot
10.8.2. Financial Performance
10.8.3. Product Offerings
10.8.4. Key Strategic Initiatives
10.8.5. SWOT Analysis
10.9. Samsung
10.9.1. Company Snapshot
10.9.2. Financial Performance
10.9.3. Product Offerings
10.9.4. Key Strategic Initiatives
10.9.5. SWOT Analysis
10.10. Xilinx
10.10.1. Company Snapshot
10.10.2. Financial Performance
10.10.3. Product Offerings
10.10.4. Key Strategic Initiatives
10.10.5. SWOT Analysis
*The list of company is subject to change during the final compilation of the report

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings