Global Artificial Intelligence (AI) in Computer Vision Market to Reach US$180.0 Billion by 2030
The global market for Artificial Intelligence (AI) in Computer Vision estimated at US$52.2 Billion in the year 2024, is expected to reach US$180.0 Billion by 2030, growing at a CAGR of 22.9% over the analysis period 2024-2030. Software, one of the segments analyzed in the report, is expected to record a 23.5% CAGR and reach US$129.7 Billion by the end of the analysis period. Growth in the Hardware segment is estimated at 21.5% CAGR over the analysis period.
The U.S. Market is Estimated at US$15.3 Billion While China is Forecast to Grow at 22.2% CAGR
The Artificial Intelligence (AI) in Computer Vision market in the U.S. is estimated at US$15.3 Billion in the year 2024. China, the world`s second largest economy, is forecast to reach a projected market size of US$27.5 Billion by the year 2030 trailing a CAGR of 22.2% over the analysis period 2024-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 20.4% and 19.2% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.8% CAGR.
Global Artificial Intelligence (AI) in Computer Vision Market - Key Trends and Drivers Summarized
How Is AI Shaping the Field of Computer Vision?
Artificial intelligence is at the core of advancements in computer vision, enabling machines to interpret, analyze, and respond to visual data in ways that are transforming industries from healthcare to autonomous driving. Using deep learning algorithms and convolutional neural networks (CNNs), AI-powered computer vision systems can identify objects, recognize faces, and even detect emotions with high precision. This technology goes beyond simple image processing; it analyzes complex patterns, understands context, and makes data-driven decisions based on visual input. For example, in the medical field, AI in computer vision assists in analyzing radiology scans, identifying tumors, or detecting early signs of diseases with accuracy often comparable to that of experienced specialists. In retail, AI-powered computer vision enables automated inventory management, detecting items on shelves and tracking stock levels in real-time. Autonomous vehicles rely on advanced computer vision systems to interpret road conditions, identify objects, and make split-second driving decisions to ensure safety. AI’s influence on computer vision is fundamentally changing how machines interact with the world, making visual data an essential resource in intelligent systems across sectors.
What Are the Key Applications of AI in Computer Vision?
AI-powered computer vision has a wide range of applications across various industries, with each use case showcasing its potential to automate, enhance accuracy, and increase efficiency. In the field of security and surveillance, AI in computer vision enables real-time monitoring and alerts by recognizing suspicious behavior, unauthorized access, or specific individuals in crowded places, aiding in crime prevention and public safety. The retail industry uses AI-based computer vision for self-checkout systems, where cameras and AI algorithms identify products, automatically ring them up, and streamline the checkout process without the need for manual barcode scanning. In agriculture, AI in computer vision is used for crop monitoring and disease detection, analyzing images to provide farmers with insights on plant health, soil conditions, and potential pest infestations. Manufacturing and quality control processes benefit from AI-driven visual inspection systems that detect defects, inconsistencies, and quality issues on production lines with more accuracy and speed than human inspectors. Additionally, facial recognition technology, a key application of computer vision, is transforming areas like personalized marketing and enhanced security access, further demonstrating AI’s capability to turn visual data into actionable insights. Each of these applications highlights the versatility and impact of AI-driven computer vision in automating complex tasks and improving precision across diverse industries.
How Is AI in Computer Vision Advancing Accuracy and Efficiency?
AI in computer vision has led to remarkable advancements in accuracy and efficiency, especially in tasks that require image recognition, object detection, and pattern analysis. By training on vast datasets, deep learning algorithms refine their ability to recognize intricate details, enabling systems to perform with human-like or even superhuman levels of accuracy in certain applications. For instance, AI-driven image recognition models can now differentiate between thousands of unique objects, making them invaluable in industries like healthcare, where radiologists rely on computer vision to identify complex patterns in X-rays, MRIs, and CT scans. AI also enhances efficiency by automating time-consuming visual tasks; in manufacturing, for example, computer vision systems can inspect hundreds of parts per minute, identifying defects in real-time and ensuring that only quality products continue down the production line. In autonomous driving, AI in computer vision is pivotal, as it allows vehicles to process visual information from their surroundings, detect obstacles, and make decisions faster than human drivers. The combination of high accuracy and real-time processing capabilities underscores the transformative role of AI in computer vision, improving productivity and safety across critical industries by reducing human error and automating repetitive visual tasks.
What Is Driving the Growth of the AI in Computer Vision Market?
The growth in the AI in computer vision market is driven by several factors, each reflecting advancements in technology, the rising need for automation, and the expanding scope of visual data applications. One significant driver is the increasing availability of high-quality, annotated datasets, which has enabled AI models to learn from diverse visual information and improve their performance across tasks. The rise of edge computing and cloud-based processing has also contributed, allowing computer vision systems to process vast amounts of visual data quickly and with minimal latency, making it feasible to deploy these systems in real-time applications, such as autonomous driving and industrial automation. Another major factor is the growing demand for security and surveillance solutions that can monitor and analyze large spaces without the need for human intervention. In healthcare, the use of computer vision for diagnostic imaging is expanding rapidly, fueled by the need for faster, more accurate analysis of medical images to meet increasing patient demands. The retail industry’s adoption of AI-driven computer vision for automated checkout, inventory management, and personalized marketing also highlights the consumer-driven aspect of this technology. Together, these factors are propelling the adoption of AI in computer vision, showcasing its potential to transform industries by unlocking the full power of visual data.
SCOPE OF STUDY:TARIFF IMPACT FACTOR
Our new release incorporates impact of tariffs CBob geographical markets as we predict a shift in competitiveness of companies based on HQ country, manufacturing base, exports and imports (finished goods and OEM). This intricate and multifaceted market reality will impact competitors by artificially increasing the COGS, reducing profitability, reconfiguring supply chains, amongst other micro and macro market dynamics.
We are diligently following expert opinions of leading Chief Economists (14,949), Think Tanks (62), Trade & Industry bodies (171) worldwide, as they assess impact and address new market realities for their ecosystems. Experts and economists from every major country are tracked for their opinions on tariffs and how they will impact their countries.
We expect this chaos to play out over the next 2-3 months and a new world order is established with more clarity. We are tracking these developments on a real time basis.
As we release this report, U.S. Trade Representatives are pushing their counterparts in 183 countries for an early closure to bilateral tariff negotiations. Most of the major trading partners also have initiated trade agreements with other key trading nations, outside of those in the works with the United States. We are tracking such secondary fallouts as supply chains shift.
To our valued clients, we say, we have your back. We will present a simplified market reassessment by incorporating these changes!
APRIL 2025: NEGOTIATION PHASE
Our April release addresses the impact of tariffs on the overall global market and presents market adjustments by geography. Our trajectories are based on historic data and evolving market impacting factors.
JULY 2025 FINAL TARIFF RESET
Complimentary Update: Our clients will also receive a complimentary update in July after a final reset is announced between nations. The final updated version incorporates clearly defined Tariff Impact Analyses.
Reciprocal and Bilateral Trade & Tariff Impact Analyses:
USA
CHINA
MEXICO
CANADA
EU
JAPAN
INDIA
176 OTHER COUNTRIES.
Leading Economists - Our knowledge base tracks 14,949 economists including a select group of most influential Chief Economists of nations, think tanks, trade and industry bodies, big enterprises, and domain experts who are sharing views on the fallout of this unprecedented paradigm shift in the global econometric landscape. Most of our 16,491+ reports have incorporated this two-stage release schedule based on milestones.
Please note: Reports are sold as single-site single-user licenses. Electronic versions require 24-48 hours as each copy is customized to the client with digital controls and custom watermarks. The Publisher uses digital controls protecting against copying and printing is restricted to one full copy to be used at the same location.Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook