Global Artificial Intelligence (AI) in Asset Management Market to Reach US$14.1 Billion by 2030
The global market for Artificial Intelligence (AI) in Asset Management estimated at US$3.5 Billion in the year 2023, is expected to reach US$14.1 Billion by 2030, growing at a CAGR of 22.1% over the analysis period 2023-2030. Machine Learning Technology, one of the segments analyzed in the report, is expected to record a 18.6% CAGR and reach US$7.9 Billion by the end of the analysis period. Growth in the Natural Language Processing (NLP) Technology segment is estimated at 28.7% CAGR over the analysis period.
The U.S. Market is Estimated at US$935.5 Million While China is Forecast to Grow at 21.2% CAGR
The Artificial Intelligence (AI) in Asset Management market in the U.S. is estimated at US$935.5 Million in the year 2023. China, the world`s second largest economy, is forecast to reach a projected market size of US$2.2 Billion by the year 2030 trailing a CAGR of 21.2% over the analysis period 2023-2030. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at a CAGR of 19.3% and 18.9% respectively over the analysis period. Within Europe, Germany is forecast to grow at approximately 15.1% CAGR.
Global Artificial Intelligence (AI) in Asset Management Market - Key Trends and Drivers Summarized
Artificial Intelligence (AI) is profoundly transforming the asset management industry, offering capabilities that automate routine tasks and augment human decision-making processes. Once viewed skeptically by financial professionals, AI technologies are now widely acknowledged for their potential to enhance rather than replace human capabilities. In asset management, AI is instrumental in automating manual and repetitive tasks, allowing fund managers and firms to concentrate on strategic initiatives that drive value. AI`s advanced data analysis capabilities are pivotal in identifying investment opportunities and assessing risks, even in volatile markets. This technology`s integration extends to essential operations such as investment research, risk management, and fraud detection, where traditional methods fall short due to the scale and rapidity of data flow.
The application of generative AI in asset management is revolutionizing the field by streamlining complex tasks with unprecedented efficiency. For instance, generative AI significantly enhances field operations by automating the creation of detailed work instructions, which are crucial for technicians and maintenance planners. This automation not only delivers necessary operational details but also integrates visual analytics to improve execution, thereby enhancing field service uptime and the rate of first-time fixes. Moreover, generative AI revolutionizes work order planning by autonomously generating comprehensive work plans that cover all necessary instructions, tools, and parts. This capability not only increases planning efficiency but also elevates maintenance standards and compliance, improving the overall reliability and reducing failure rates of assets.
The burgeoning integration of AI in asset management also necessitates addressing regulatory and ethical considerations, ensuring transparency and fairness in AI-driven decisions. As AI technologies become entrenched, asset managers must acquire new skills related to data science and AI to stay relevant and effective. The narrative around AI in asset management emphasizes empowerment and innovation, positioning firms that embrace these technologies for success in a digital and data-driven market. The future of asset management relies on merging AI with human insights, creating a collaborative environment that enhances analytical capabilities and decision-making processes. As the industry continues to evolve, the role of AI will only grow, marking an era of enhanced productivity and innovation in asset management.
Select Competitors (Total 23 Featured) -Learn how to effectively navigate the market research process to help guide your organization on the journey to success.
Download eBook