The Global Market for AI Chips 2024-2034
The speed of development of generative AI, boosted by the success of OpenAI's ChatGPT, is raising investor interest in companies working on AI-related infrastructure such as AI chips. Artificial Intelligence (AI) chips are a new generation of microprocessors chips designed to efficiently run AI-related workloads like machine learning, neural networks, and deep learning. As AI technology has advanced rapidly in recent years, there has been increasing demand for hardware optimized for AI processing versus general-purpose computer chips. AI chips are designed to run such AI algorithms faster and more efficiently than traditional processors. This has driven extensive research, development, and investment into AI chip technology by established and emerging companies.
The Global Market for AI Chips 2024-2034 provides a comprehensive analysis of the global AI chip landscape. Spanning over 300 pages, the report covers AI chip technology fundamentals, key capabilities enabled, applications across industries, market segmentation, regional trends, major players, start-up ecosystem, funding and investments, challenges, manufacturing and supply chain dynamics, architectural innovations, sustainability impacts, and the future outlook for these transformative technologies.
Multiple data tables and charts quantify market size projections to 2034 by region, vertical, chip type, and more. Profiles of over 100 companies highlight competitive positioning. Expert insights identify growth opportunities as specialized AI hardware progresses. The Global Market for AI Chips 2024-2034 is ideal for semiconductor industry participants, tech investors, and companies strategizing AI chip adoption to inform planning amid this rapidly evolving space.
Report contents include:
AI Chip Technology Fundamentals
Architectures like GPUs, ASICs, neuromorphic chips
Processing capabilities enabled by AI hardware
Development history and ecosystem
Market Landscape and Segmentation
Market size forecasts globally and by region
Breakdown by chip type - ASICs, GPUs, CPUs, FPGAs
Split by training vs inference workloads
Segmentation by end-use industry vertical
Regional Analysis
AI chip development trends in China
Government policies in the US, Europe, South Korea, Japan
Edge AI advances by country
Industry Drivers and Adoption Factors
Key market growth drivers
Government funding and R&D initiatives
Corporate investments fuelling innovation
Applications propelling demand across domains
Competitive Environment
Profiles of over 130 leading companies. Companies profiled include AMD, Astrus, Celestial AI,
Cerebras, d-Matrix, DEEPX, EdgeCortix® Inc., Etched.ai, Enfabrica, Enflame, Google, Horizon Robotics, IBM, Kneron, Lightmatter, Modular, MediaTek Inc, Mythic, Neuchips, Nvidia, Panmnesia, Rebellions, Samsung, SambaNova Systems, Sapeon, SiMa.ai, SpiNNcloud Systems GmbH and Tenstorrent.
Startups advancing new architectures
Silicon giants leveraging semiconductor expertise
Cloud providers and automotive supplier activity
Technology Innovations
Novel materials, packaging, software abstractions
Architectural advances in processing, memory, interconnects
Progress in manufacturing techniques like lithography, 3D stacking
Challenges and Sustainability
Design, benchmarking, programming complexities
Geopolitical implications and policy considerations
Environmental stewardship priorities and frameworks