Strategic Overview of Quantum Computing Applications in the Automotive Industry
New Product Development Initiatives to Focus on Process Optimization and Advanced Materials Research
This analytics highlights quantum computing innovation in the automotive industry and the significance of integrating this technology in supply chain, materials research, vehicle design, vehicle testing, assembly, manufacturing, retail, after-sales, and vehicle-in-motion. Simulations integrated with quantum computing processors analyze multiple pre-production scenarios substantially faster; they are more accurate and have a shorter turnaround time, helping automakers stay ahead of the competition. Quantum computing also helps simulate complex molecular properties and battery material reactions and behaviors at the quantum level and can enable OEMs to design low-cost batteries with new, sustainable materials. The technology can help optimize traffic management and vehicle routing. BMW, VW, Toyota, Hyundai, Daimler, and Ford are piloting (in partnership) quantum computing for select use cases. Though the proof-of-concept (Poc) for a smaller set of variables looked promising, the future plan will involve scaling up the infrastructure, qubits quality, and using complex sets of parameters. Identifying the right use case is critical before investing in quantum research. OEMs should partner with professional services experts that can help with problem identification through proof-of-concept development and eventually integration into day-to-day production processes. However, huge investment costs and existing pertinent technologies (to digitize the automotive value chain) are currently hindering quantum adoption among OEMs. Right use case identification, coupled with a hybrid quantum-classical computing model, will enable OEMs to achieve the best of both worlds. This analytics presents the overall scope of quantum computing and the current challenges hindering quantum momentum in the automotive industry. It analyzes OEM partnerships and key use cases.
Strategic Imperatives
Why is it Increasingly Difficult to Grow?
The Strategic Imperative 8™
The Impact of the Top 3 Strategic Imperatives on the Automotive Quantum Computing Industry
Growth Opportunities Fuel the Growth Pipeline Engine™
Growth Opportunity Analysis
Scope of Analysis
Growth Drivers
Growth Restraints
Key Findings
Quantum Computing in the Automotive Industry
Classical Bits vs. Qubits
Classical vs. Quantum Computers
Quantum Computing Methods
How can Quantum Computing Transform Industry Verticals?
Quantum Computing Domains
Quantum Computing Across the Automotive Value Chain
Stakeholder Overview
Automotive Partnerships in Quantum Computing
Current Challenges to Using Quantum Computing in the Automotive Industry
Hybrid Operating Model of the Future
Quantum Computing in Product Design
Use Case Segmentation
Quantum Simulations for Automotive Product Design
Quantum Simulation in Product Design—Automotive Partnerships
Quantum Simulation to Revolutionize F1 Racing
Quantum Chemistry for EV Battery Design
Case Study—Ford’s Exploration of EV Battery Materials Using Quantum Simulations
Other OEM Initiatives—EV Battery & Fuel Cell Design
Automotive OEMs Exploring Quantum in Product Design Phase
Quantum Computing in Product Design—Key Takeaways
Quantum Computing in Manufacturing
Use Case Segmentation
Quantum Computing in Manufacturing
Quantum Computing in Process Optimization
Case Study—BMW’s Use of Quantum Computing for Robot Path Optimization
Quantum-based Machine Learning for Predictive System Maintenance
Quantum Digital Twins
Partnerships for Quantum Computing in Automotive Manufacturing
Automotive OEMs & Tier I Suppliers exploring Quantum Computing in Manufacturing
Quantum in Manufacturing—Key Takeaways
Quantum Computing in Retail, Aftersales and Vehicle In-Motion
Use Case Segmentation
Quantum Computing Use Case Analysis in Retail & Aftersales
Quantum Computing for Vehicle In-Motion Use Cases
Case Study—Quantum Computing for Traffic and Route Optimization