Innovative AI-enabled Clinical Trial Companies: Strategic Profiling and Growth Opportunities

Innovative AI-enabled Clinical Trial Companies: Strategic Profiling and Growth Opportunities


The Integration of Real-world Insights into Trial Management is Propelling AI Adoption in Clinical Trials

As global clinical pipelines witness a surge in complex novel therapies, there is a general inclination toward improving trial design through adaptive trial designs with technology-enabled solutions for planning and execution. Artificial intelligence (AI) is gaining large-scale recognition in terms of supporting decentralized trial designs and allowing patient-centric clinical trial modalities. Clinical trials rely on large-scale longitudinal patient databases in the form of electronic medical records (EMRs). Despite the availability of robust databases, most lack clarity and structure, making them difficult to read. As a result, the rapid adoption of AI/machine learning (ML) algorithms and platforms allows easy structuring of unstructured databases, and the use of electronic health records (EHRs) represents a vast, rich, and highly relevant data source that holds tremendous potential to improve the global clinical trial landscape.

Incorporating integrated AI-driven solutions in clinical trial design, site selection, and patient identification and retention will ease the go-to-market strategy for various CROs and pharmaceutical companies. AI is gaining significance in clinical trials to reduce cost, increase efficiency, and support the transition to decentralized trials through remote patient recruitment, management, and engagement. Interactive platforms in the form of voice recognition, chatbots, and other devices ensure better patient adherence and greater retention. These platforms are also highly beneficial in the selection of appropriate investigators and trial sites. Randomized control trials (RCTs) represent another important area seeing increased AI application, where sponsors can leverage the technology to analyze the vast site-level datasets generated for greater visibility into trial design and implementation.

Leading CROs, such as Icon plc, Novotech, Syneos Health, and IQVIA, as well as several pharmaceutical companies, including BMS, have successfully deployed AI-based platforms to support site selection and patient recruitment. BMS, Amgen, AstraZeneca, and Novartis, among several other companies, are also applying AI in clinical trials to enable the optimization of different stages, with the intent of reducing overall trial timelines.

AI brings innovation fundamental to transform clinical trials, such as collecting and analyzing RWD, seamlessly combining phase I and II of clinical trials, and developing novel patient-centric endpoints. AI can also be leveraged to create standardized, structured, and digital data elements from a range of inputs. As AI-enabled study design helps optimize and accelerate the creation of patient-centric designs, it significantly reduces patient burden, increases the likelihood of success, decreases the number of amendments, and improves the overall efficiency of trials. Together, large technology providers and pharmaceutical start-ups are setting the stage for more effective clinical trials in the future.


Strategic Imperatives
Why Is It Increasingly Difficult to Grow?
The Strategic Imperative 8™
The Impact of the Top 3 Strategic Imperatives on the AI-enabled Clinical Trials Industry
Growth Opportunities Fuel the Growth Pipeline Engine™
Ecosystem
Scope of Analysis
Segmentation
Drug Development Vendor Ecosystem
AI Vendor Ecosystem
Value Proposition of Using AI in Clinical Trials
Strategic Profiles Based on Unique Value Proposition
Growth Opportunity Analysis
Growth Drivers
Growth Restraints
Regulatory Scenario: AI Use in Clinical Trials
ConcertAI: Company Overview
ConcertAI: Value Proposition
ConcertAI: Growth Strategy
Unlearn: Company Overview
Unlearn: Value Proposition
Unlearn: Growth Strategy
Phesi: Company Overview
Phesi: Value Proposition
Phesi: Growth Strategy
QuantHealth: Company Overview
QuantHealth: Value Proposition
QuantHealth: Growth Strategy
Owkin: Company Overview
Owkin: Value Proposition
Owkin: Growth Strategy
Deep 6 AI: Company Overview
Deep 6 AI: Value Proposition
Deep 6 AI: Growth Strategy
Paradigm: Company Overview
Paradigm: Value Proposition
Paradigm: Growth Strategy
Mendel Health: Company Overview
Mendel Health: Value Proposition
Mendel Health: Growth Strategy
Oncoshot: Company Overview
Oncoshot: Value Proposition
Oncoshot: Growth Strategy
Amazon Web Services, Inc.
AWS: Value Proposition
AWS: Growth Strategy
Growth Opportunity Universe
Growth Opportunity 1: Data Interoperability with Federated Data Systems
Growth Opportunity 2: Data Restructuring and Distribution with LLMs for Patient Identification and Enrollment
Growth Opportunity 3: RWD/RWE-based Oncology Trial Design and Protocol Optimization
List of Exhibits
Legal Disclaimer

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings