HD Map for Autonomous Vehicles Market

HD Map for Autonomous Vehicles Market



Growth Factors of HD map for autonomous vehicle Market

The HD map for autonomous vehicle market size was valued at USD 1.9392 billion in 2023, and the market is now projected to grow from USD 2.4203 billion in 2024 to USD 20.0656 billion by 2032, exhibiting a CAGR of 30.3% during the forecast period of 2024-2032.

The COVID-19 pandemic had some positive and negative effects on HD map for AV market. The COVID 19 pandemic affected the progress of autonomous vehicle technology, and HD mapping projects because supply chains were disrupted, and lockdowns were evident in many countries. But the pandemic catalyzed a switch to automation and contactless processes which led to funding of autonomous solutions. Over time the need for automated automobiles dawned driven majorly by industries especially in supply chain and deliveries. Considering the importance of the HD map for precise navigation, it became even more important as the AV applications increased for various sectors after the pandemic.

Current advancements in the use of HD maps in vehicle autonomy seem to have three major characteristics: real-time updates, artificial intelligence and the crowd-sourced model. Real-time mapping helps to reaches the goals of allowing autonomous systems to react to varying road conditions. Deep learning is used to improve the map details and also the map ability to predict and forecast. Freeways are better scalable as crowd sourced data from connected vehicles and sensors contribute towards real-time updating of the HD maps. In addition, the contracts signed between auto manufacturers and tech giants are picking up the pace of advancement, where 5G improves the rate of data transfer for improved precision in navigation. Thus, all the above-mentioned factors are contributing towards the HD map for autonomous vehicle market growth.

Some of the key factors behind the growth of the HD map market for autonomous vehicles are demand for efficient and safe navigation, improvement in autonomous driving technology, presence of the connected vehicle. HD maps contain accurate and highly timely information that are essential for the operation of self-driving systems in intricate conditions. The innovation of AI and machine learning also benefit the map by increasing the precision and the flexibility. Besides, the outlay made by automobile giants, tech firms, as well as governments in smart city network solutions along with the demand for automation in the logistics and transportation sectors are boosting market growth.

Comprehensive Analysis HD map for autonomous vehicle Market

The HD map market for autonomous vehicle can be bifurcated on the basis of car type, solution type and level of automation. And based on the type of vehicles there are the passenger vehicle market and the commercial vehicle market both of which are expanding their use of HD maps for navigation. By solution, there are two primary approaches: and real time updates flavors which are the cloud based and the embedded which focus on real time updates and scalability and the local update flavor which provides the data processing within the specific area of implementation. The market also divides between semi-controlled cars that have advanced driver-assistance systems, or ADAS, and fully controlled automobiles, which are self-driving and that use HD maps as the only means of navigation and decision-making.

North America is the leading player in HD maps for autonomous vehicles market share due to well-developed technology, high investment from go-to players such as Google, Tesla, and major auto manufacturers. Market opportunities also include the regions’ well-developed infrastructure and favorable legal framework, as well as a high level of adoption of connected and autonomous vehicles. The U. S. advanced in fleet testing and experimentation of SA [Self-Driving] solutions with more collaboration between tech and auto industries. Also, smart city projects, as well as the growth of the 5G, contribute to the leadership of this region in the market.

Key players in this sector include TomTom (Amsterdam, Netherlands), HERE Technologies (Eindhoven, Netherlands), Waymo (California, U.S.), Civil Maps (San Francisco, U.S.), Mapbox (California, U.S.), Woven Planet Holding (Tokyo, Japan), NVIDIA (California, U.S.)

Real-time 3D mapping is one of the major trends among HD map market for autonomous vehicles by the year 2023. Real-time mapping systems are being improved by having advanced AI incorporated into them like what NVIDIA has done. This shift enables the autonomous systems to have better understanding of traffic and other factors such as weather that helps in achieving safety and efficiency. Furthermore, there has been an increased implementation of crowd sourced data through connected vehicles leading to real-time as well as scalability of the HD maps making them more reliable for both semi and fully autonomous vehicles.

Segmentation Table

ATTRIBUTE DETAILS

Study Period 2019-2032

Base Year 2023

Estimated Year 2024

Forecast Period 2024-2032

Historical Period 2019-2022

Growth Rate CAGR of 30.3% from 2024 to 2032

Unit Value (USD Million)

Segmentations By Vehicle Type

- Passenger Vehicle

- Commercial Vehicle

By Solution

- Cloud-Based

- Embedded

By Level Of Automation

- Semi-Autonomous

- Fully Autonomous

By Geography

- North America (By Solution, Vehicle Type and By Level Of Automation)
  • U.S. (By Vehicle Type)
  • Canada (By Vehicle Type)
  • Mexico (By Vehicle Type)
- Europe (By Solution, Vehicle Type and By Level Of Automation )
  • U.K. (By Vehicle Type)
  • Germany (By Vehicle Type)
  • France (By Vehicle Type)
  • Rest Of Europe (By Vehicle Type)
- Asia Pacific (By Solution, Vehicle Type and By Level Of Automation )
  • China (By Vehicle Type)
  • Japan (By Vehicle Type)
  • India (By Vehicle Type)
  • South Korea (By Vehicle Type)
  • Rest Of APAC (By Vehicle Type)
- Rest of the World (By Solution, Vehicle Type and By Level Of Automation )


Please Note: It will take 5-6 business days to complete the report upon order confirmation.


1. Introduction
1.1. Research Scope
1.2. Market Segmentation
1.3. Research Methodology
1.4. Definitions and Assumptions
2. Executive Summary
3. Market Dynamics
3.1. Market Drivers
3.2. Market Restraints
3.3. Market Opportunities
4. Key Insights
4.1. Key Vehicle Type Developments - Merger, Acquisitions, and Partnerships
4.2. Distribution Analysis
4.3. Porter’s Five Forces Analysis
4.4. PEST Analysis
4.5. Passenger Vehicle Developments
4.6. Impact of COVID-19
5. Global HD Map For Autonomous Vehicle Market Analysis, Insights and Forecast, 2019-2032
5.1. Key Findings / Summary
5.2. Market Analysis, Insights and Forecast – By Level Of Automation
5.2.1. Semi Autonomous
5.2.2. Fully Autonomous
5.3. Market Analysis, Insights and Forecast – By Solution
5.3.1. Cloud-Based
5.3.2. Embedded
5.4. Market Analysis, Insights and Forecast – By Vehicle Type
5.4.1. Passenger Vehicle
5.4.2. Commercial Vehicle
5.5. Market Analysis, Insights and Forecast – By Region
5.5.1. North America
5.5.2. Europe
5.5.3. Asia Pacific
5.5.4. Rest of the World
6. North America HD Map For Autonomous Vehicle Market Analysis, Insights and Forecast, 2019-2032
6.1. Key Findings / Summary
6.2. Market Analysis – By Level Of Automation
6.2.1. Semi Autonomous
6.2.2. Fully Autonomous
6.3. Market Analysis – By Solution
6.3.1. Cloud-Based
6.3.2. Embedded
6.4. Market Analysis – By Vehicle Type
6.4.1. Passenger Vehicle
6.4.2. Commercial Vehicle
6.5. Market Analysis – By Country
6.5.1. U.S.
6.5.1.1. By Vehicle Type
6.5.2. Canada
6.5.2.1. By Vehicle Type
6.5.3. Mexico
6.5.3.1. By Vehicle Type
7. Europe HD Map For Autonomous Vehicle Market Analysis, Insights and Forecast, 2019-2032
7.1. Key Findings / Summary
7.2. Market Analysis – By Level Of Automation
7.2.1. Semi Autonomous
7.2.2. Fully Autonomous
7.3. Market Analysis – By Solution
7.3.1. Cloud-Based
7.3.2. Embedded
7.4. Market Analysis – By Vehicle Type
7.4.1. Passenger Vehicle
7.4.2. Commercial Vehicle
7.5. Market Analysis – By Country
7.5.1. U.K.
7.5.1.1. By Vehicle Type
7.5.2. Germany
7.5.2.1. By Vehicle Type
7.5.3. France
7.5.3.1. By Vehicle Type
7.5.4. Rest of Europe
7.5.4.1. By Vehicle Type
8. Asia Pacific HD Map For Autonomous Vehicle Market Analysis, Insights and Forecast, 2019-2032
8.1. Key Findings / Summary
8.2. Market Analysis – By Level Of Automation
8.2.1. Semi Autonomous
8.2.2. Fully Autonomous
8.3. Market Analysis – By Solution
8.3.1. Cloud-Based
8.3.2. Embedded
8.4. Market Analysis – By Vehicle Type
8.4.1. Passenger Vehicle
8.4.2. Commercial Vehicle
8.5. Market Analysis – By Country
8.5.1. China
8.5.1.1. By Vehicle Type
8.5.2. Japan
8.5.2.1. By Vehicle Type
8.5.3. India
8.5.3.1. By Vehicle Type
8.5.4. South Korea
8.5.4.1. By Vehicle Type
8.5.5. Rest of APAC
9. 8.5.5.1 By Vehicle Type
10. Rest of the World HD Map For Autonomous Vehicle Market Analysis, Insights and Forecast, 2019-2032
10.1. Key Findings / Summary
10.2. Market Analysis – By Level Of Automation
10.2.1. Semi Autonomous
10.2.2. Fully Autonomous
10.3. Market Analysis – By Solution
10.3.1. Cloud-Based
10.3.2. Embedded
11. Competitive Analysis
11.1. Key Vehicle Type Developments
11.2. Global Market Ranking Analysis (2023)
11.3. Competition Dashboard
11.4. Comparative Analysis – Major Players
11.5. Company Profiles
11.5.1. TomTom
11.5.1.1. Overview
11.5.1.2. Vehicle Types & services
11.5.1.3. SWOT Analysis
11.5.1.4. Recent Developments
11.5.1.5. Strategies
11.5.1.6. Financials (Based on Availability)
11.5.2. HERE Technologies
11.5.2.1. Overview
11.5.2.2. Vehicle Types & services
11.5.2.3. SWOT Analysis
11.5.2.4. Recent Developments
11.5.2.5. Strategies
11.5.2.6. Financials (Based on Availability)
11.5.3. Waymo
11.5.3.1. Overview
11.5.3.2. Vehicle Types & services
11.5.3.3. SWOT Analysis
11.5.3.4. Recent Developments
11.5.3.5. Strategies
11.5.3.6. Financials (Based on Availability)
11.5.4. Civil Maps
11.5.4.1. Overview
11.5.4.2. Vehicle Types & services
11.5.4.3. SWOT Analysis
11.5.4.4. Recent Developments
11.5.4.5. Strategies
11.5.4.6. Financials (Based on Availability)
11.5.5. Mapbox
11.5.5.1. Overview
11.5.5.2. Vehicle Types & services
11.5.5.3. SWOT Analysis
11.5.5.4. Recent Developments
11.5.5.5. Strategies
11.5.5.6. Financials (Based on Availability)
11.5.6. Woven Planet Holding
11.5.6.1. Overview
11.5.6.2. Vehicle Types & services
11.5.6.3. SWOT Analysis
11.5.6.4. Recent Developments
11.5.6.5. Strategies
11.5.6.6. Financials (Based on Availability)
11.5.7. NVIDIA
11.5.7.1. Overview
11.5.7.2. Vehicle Types & services
11.5.7.3. SWOT Analysis
11.5.7.4. Recent Developments
11.5.7.5. Strategies
11.5.7.6. Financials (Based on Availability)
11.5.8. Navinfo
11.5.8.1. Overview
11.5.8.2. Vehicle Types & services
11.5.8.3. SWOT Analysis
11.5.8.4. Recent Developments
11.5.8.5. Strategies
11.5.8.6. Financials (Based on Availability)
11.5.9. The Sanborn Map Company
11.5.9.1. Overview
11.5.9.2. Vehicle Types & services
11.5.9.3. SWOT Analysis
11.5.9.4. Recent Developments
11.5.9.5. Strategies
11.5.9.6. Financials (Based on Availability)
11.5.10. Esri
11.5.10.1. Overview
11.5.10.2. Vehicle Types & services
11.5.10.3. SWOT Analysis
11.5.10.4. Recent Developments
11.5.10.5. Strategies
11.5.10.6. Financials (Based on Availability)
11.5.11. Dynamic Map Platform
11.5.11.1. Overview
11.5.11.2. Vehicle Types & services
11.5.11.3. SWOT Analysis
11.5.11.4. Recent Developments
11.5.11.5. Strategies
11.5.11.6. Financials (Based on Availability)

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings