AI-enabled Testing Market

AI-enabled Testing Market



Growth Factors of AI-enabled Testing Market

The AI-enabled testing market size was valued at USD 643.5 million in 2022, and the market is now projected to grow from USD 736.8 million in 2023 to USD 2,746.6 million by 2030, exhibiting a CAGR of 20.7% during the forecast period of 2023-2030.

The COVID-19 pandemic impacted the AI-enabled testing market growth as businesses were heavily dependent on online channels raising the need for improving testing. Artificial intelligence made costly quality assurance checks less of a concern, made bug repairs faster and reduced time-to-market. The key aspects such as quick test data generation and visual testing boosted the market development. Companies released new products and forged partnerships during the COVID-19 pandemic period. These technological developments helped to increase market coverage in every sector.

The increasing need for no-code testing solutions contributes to the AI-enabled testing market share since its platform can serve a user with trivial programming competency. Low code methods in test automation enhance the testing process and make it easier to implement by anybody. This enables all the stakeholders and the project managers to work using AI-driven no-code tools without necessarily having a deep understanding of programming. Comet version control lets the employees handle test cases where they only require basic HTML and CSS knowledge for the entire process. This trend is helping to drive the demand and adoption of these solutions in the market.

Besides, the help of AI security testing increases the effectiveness of vulnerability identification making applications safer and more reliable. It incorporates security testing into the Software Development Life Cycle (SDLC), enhancing security effectiveness and increasing remediation pace and compliance. AI-driven testing integrates machine learning and real-time threat intelligence enhancing defences against new threats. The main vendors are developing and implementing new and more reliable AI security tools and services to respond to the mounting consumer expectations. These innovations are being used to advance AI-based testing in different industries.

Comprehensive Analysis of AI-enabled Testing Market

Market segmentation plays a major role in increasing the market of AI-enabled testing and the information and communication technology industry. This market expansion can be considered as offering comprehensive regional analyses of the potential supply and demand drivers of the information & communication technology market. These segmentations are methodically segregated by deployment, by application, by technology and by industry. The deployment includes, Cloud and On-premise. The application includes, Web-based and Mobile-based. The technology includes, Machine Learning, NLP (Natural Language Processing), Computer Vision, MBTA (Model-based Test Automation) and Others. The industry includes, IT & Telecom, BFSI, Healthcare, Energy & Utilities and Others.

North America held the largest market share in 2022, driven by significant investments, particularly in the U.S. The U.S. also hosts many leading players advancing AI-enabled testing solutions. The region plays an important role in emerging trends such as Machine Learning, Robotic Process Automation and Natural Language Processing (NLP). These advances benefit market development. Investment in North America remains robust, which creates a solid foundation for the growth in AI-based testing.

The key industry players in the market play a crucial role in the information & communication technology industry assuring industrial prospectus growth and setting market standards. These players include, Functionize, Inc. (U.S.), Sauce Labs Inc. (U.S.), Tricentis (U.S.), Diffblue Ltd. (U.K.), Applitools (Israel), Mabl Inc. (U.S.), UBS Hainer GmbH (Germany), Testim (U.S.), Perforce Software, Inc. (U.S.) and Open Text (MicroFocus) (Canada). These market players provide a level-playing competitive landscape.

In November 2023, Mabl shared that it joined forces with GitLab, the all-in-one AI-assisted DevSecOps AI platform for software transformation. Such integration helps development teams run end-to-end automated testing within CI/CD processes without problems.

Segmentation Table

Global AI-enabled Testing Market Scope

Study Period 2017-2030

Base Year 2022

Forecast Period 2023-2030

Growth Rate CAGR of 20.7% from 2023 to 2030

Historical Period 2017-2021

Unit Value (USD Billion)

Segmentation By Deployment, Application, Technology, Industry, and Region

By Deployment Cloud

On-premise

By Application Web-based

Mobile-based

By Technology Machine Learning

NLP (Natural Language Processing)

Computer Vision

MBTA (Model-based Test Automation)

Others (RPA)

By Industry IT & Telecom

BFSI

Healthcare

Energy & Utilities

Others (Government, Education, and Manufacturing)

By Region North America (By Deployment, Application, Technology, Industry, and Country)
  • U.S. (By Industry)
  • Canada (By Industry)
  • Mexico (By Industry)
Europe (By Deployment, Application, Technology, Industry, and Country)
  • U.K. (By Industry)
  • Germany (By Industry)
  • France (By Industry)
  • Italy (By Industry)
  • Spain (By Industry)
  • Russia (By Industry)
  • Benelux (By Industry)
  • Nordics (By Industry)
  • Rest of Europe
Asia Pacific (By Deployment, Application, Technology, Industry, and Country)
  • China (By Industry)
  • Japan (By Industry)
  • India (By Industry)
  • South Korea (By Industry)
  • ASEAN (By Industry)
  • Oceania (By Industry)
  • Rest of the Asia Pacific
Middle East & Africa (By Deployment, Application, Technology, Industry, and Country)
  • Turkey (By Industry)
  • Israel (By Industry)
  • GCC (By Industry)
  • North Africa (By Industry)
  • South Africa (By Industry)
  • Rest of the Middle East & Africa
South America (By Deployment, Application, Technology, Industry, and Country)
  • Brazil (By Industry)
  • Argentina (By Industry)
  • Rest of South America


  • Please Note: It will take 5-6 business days to complete the report upon order confirmation.


1. Introduction
1.1. Definition, By Segment
1.2. Research Methodology/Approach
1.3. Data Sources
2. Executive Summary
3. Market Dynamics
3.1. Macro and Micro Economic Indicators
3.2. Drivers, Restraints, Opportunities and Trends
3.3. Impact of COVID-19
4. Competition Landscape
4.1. Business Strategies Adopted by Key Players
4.2. Consolidated SWOT Analysis of Key Players
4.3. Global AI-enabled Testing Key Players Market Share/Ranking, 2022
5. Global AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
5.1. Key Findings
5.2. By Deployment (USD)
5.2.1. Cloud
5.2.2. On-premise
5.3. By Application (USD)
5.3.1. Web-based
5.3.2. Mobile-based
5.4. By Technology (USD)
5.4.1. Machine Learning
5.4.2. NLP (Natural Language Processing)
5.4.3. Computer Vision
5.4.4. MBTA (Model-based test automation)
5.4.5. Others (RPA, etc.)
5.5. By Industry (USD)
5.5.1. IT & Telecom
5.5.2. BFSI
5.5.3. Healthcare
5.5.4. Energy & Utilities
5.5.5. Others(Government, Education, Manufacturing, etc.)
5.6. By Region (USD)
5.6.1. North America
5.6.2. Europe
5.6.3. Asia Pacific
5.6.4. Middle East & Africa
5.6.5. South America
6. North America AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
6.1. Key Findings
6.2. By Deployment (USD)
6.2.1. Cloud
6.2.2. On-premise
6.3. By Application (USD)
6.3.1. Web-based
6.3.2. Mobile-based
6.4. By Technology (USD)
6.4.1. Machine Learning
6.4.2. NLP (Natural Language Processing)
6.4.3. Computer Vision
6.4.4. MBTA (Model-based test automation)
6.4.5. Others
6.5. By Industry (USD)
6.5.1. IT & Telecom
6.5.2. BFSI
6.5.3. Healthcare
6.5.4. Energy & Utilities
6.5.5. Others
6.6. By Country (USD)
6.6.1. United States
6.6.1.1. By Industry
6.6.2. Canada
6.6.2.1. By Industry
6.6.3. Mexico
6.6.3.1. By Industry
7. Europe AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
7.1. Key Findings
7.2. By Deployment (USD)
7.2.1. Cloud
7.2.2. On-premise
7.3. By Application (USD)
7.3.1. Web-based
7.3.2. Mobile-based
7.4. By Technology (USD)
7.4.1. Machine Learning
7.4.2. NLP (Natural Language Processing)
7.4.3. Computer Vision
7.4.4. MBTA (Model-based test automation)
7.4.5. Others
7.5. By Industry (USD)
7.5.1. IT & Telecom
7.5.2. BFSI
7.5.3. Healthcare
7.5.4. Energy & Utilities
7.5.5. Others
7.6. By Country (USD)
7.6.1. United Kingdom
7.6.1.1. By Industry
7.6.2. Germany
7.6.2.1. By Industry
7.6.3. France
7.6.3.1. By Industry
7.6.4. Italy
7.6.4.1. By Industry
7.6.5. Spain
7.6.5.1. By Industry
7.6.6. Russia
7.6.6.1. By Industry
7.6.7. Benelux
7.6.7.1. By Industry
7.6.8. Nordics
7.6.8.1. By Industry
7.6.9. Rest of Europe
8. Asia Pacific AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
8.1. Key Findings
8.2. By Deployment (USD)
8.2.1. Cloud
8.2.2. On-premise
8.3. By Application (USD)
8.3.1. Web-based
8.3.2. Mobile-based
8.4. By Technology (USD)
8.4.1. Machine Learning
8.4.2. NLP (Natural Language Processing)
8.4.3. Computer Vision
8.4.4. MBTA (Model-based test automation)
8.4.5. Others
8.5. By Industry (USD)
8.5.1. IT & Telecom
8.5.2. BFSI
8.5.3. Healthcare
8.5.4. Energy & Utilities
8.5.5. Others
8.6. By Country (USD)
8.6.1. China
8.6.1.1. By Industry
8.6.2. India
8.6.2.1. By Industry
8.6.3. Japan
8.6.3.1. By Industry
8.6.4. South Korea
8.6.4.1. By Industry
8.6.5. ASEAN
8.6.5.1. By Industry
8.6.6. Oceania
8.6.6.1. By Industry
8.6.7. Rest of Asia Pacific
9. Middle East & Africa AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
9.1. Key Findings
9.2. By Deployment (USD)
9.2.1. Cloud
9.2.2. On-premise
9.3. By Application (USD)
9.3.1. Web-based
9.3.2. Mobile-based
9.4. By Technology (USD)
9.4.1. Machine Learning
9.4.2. NLP (Natural Language Processing)
9.4.3. Computer Vision
9.4.4. MBTA (Model-based test automation)
9.4.5. Others
9.5. By Industry (USD)
9.5.1. IT & Telecom
9.5.2. BFSI
9.5.3. Healthcare
9.5.4. Energy & Utilities
9.5.5. Others
9.6. By Country (USD)
9.6.1. Turkey
9.6.1.1. By Industry
9.6.2. Israel
9.6.2.1. By Industry
9.6.3. GCC
9.6.3.1. By Industry
9.6.4. North Africa
9.6.4.1. By Industry
9.6.5. South Africa
9.6.5.1. By Industry
9.6.6. Rest of MEA
10. South America AI-enabled Testing Market Size Estimates and Forecasts, By Segments, 2017-2030
10.1. Key Findings
10.2. By Deployment (USD)
10.2.1. Cloud
10.2.2. On-premise
10.3. By Application (USD)
10.3.1. Web-based
10.3.2. Mobile-based
10.4. By Technology (USD)
10.4.1. Machine Learning
10.4.2. NLP (Natural Language Processing)
10.4.3. Computer Vision
10.4.4. MBTA (Model-based test automation)
10.4.5. Others
10.5. By Industry (USD)
10.5.1. IT & Telecom
10.5.2. BFSI
10.5.3. Healthcare
10.5.4. Energy & Utilities
10.5.5. Others
10.6. By Country (USD)
10.6.1. Brazil
10.6.1.1. By Industry
10.6.2. Argentina
10.6.2.1. By Industry
10.6.3. Rest of South America
11. Company Profiles for Top 10 Players (Based on data availability in public domain and/or on paid databases)
11.1. Functionize, Inc.
11.1.1. Overview
11.1.1.1. Key Management
11.1.1.2. Headquarters
11.1.1.3. Offerings/Business Segments
11.1.2. Key Details (Key details are consolidated data and not product/service specific)
11.1.2.1. Employee Size
11.1.2.2. Past and Current Revenue
11.1.2.3. Geographical Share
11.1.2.4. Business Segment Share
11.1.2.5. Recent Developments
11.2. Sauce Labs Inc.
11.2.1. Overview
11.2.1.1. Key Management
11.2.1.2. Headquarters
11.2.1.3. Offerings/Business Segments
11.2.2. Key Details (Key details are consolidated data and not product/service specific)
11.2.2.1. Employee Size
11.2.2.2. Past and Current Revenue
11.2.2.3. Geographical Share
11.2.2.4. Business Segment Share
11.2.2.5. Recent Developments
11.3. Tricentis
11.3.1. Overview
11.3.1.1. Key Management
11.3.1.2. Headquarters
11.3.1.3. Offerings/Business Segments
11.3.2. Key Details (Key details are consolidated data and not product/service specific)
11.3.2.1. Employee Size
11.3.2.2. Past and Current Revenue
11.3.2.3. Geographical Share
11.3.2.4. Business Segment Share
11.3.2.5. Recent Developments
11.4. Diffblue Ltd.
11.4.1. Overview
11.4.1.1. Key Management
11.4.1.2. Headquarters
11.4.1.3. Offerings/Business Segments
11.4.2. Key Details (Key details are consolidated data and not product/service specific)
11.4.2.1. Employee Size
11.4.2.2. Past and Current Revenue
11.4.2.3. Geographical Share
11.4.2.4. Business Segment Share
11.4.2.5. Recent Developments
11.5. Applitools
11.5.1. Overview
11.5.1.1. Key Management
11.5.1.2. Headquarters
11.5.1.3. Offerings/Business Segments
11.5.2. Key Details (Key details are consolidated data and not product/service specific)
11.5.2.1. Employee Size
11.5.2.2. Past and Current Revenue
11.5.2.3. Geographical Share
11.5.2.4. Business Segment Share
11.5.2.5. Recent Developments
11.6. mabl Inc.
11.6.1. Overview
11.6.1.1. Key Management
11.6.1.2. Headquarters
11.6.1.3. Offerings/Business Segments
11.6.2. Key Details (Key details are consolidated data and not product/service specific)
11.6.2.1. Employee Size
11.6.2.2. Past and Current Revenue
11.6.2.3. Geographical Share
11.6.2.4. Business Segment Share
11.6.2.5. Recent Developments
11.7. UBS Hainer GmbH
11.7.1. Overview
11.7.1.1. Key Management
11.7.1.2. Headquarters
11.7.1.3. Offerings/Business Segments
11.7.2. Key Details (Key details are consolidated data and not product/service specific)
11.7.2.1. Employee Size
11.7.2.2. Past and Current Revenue
11.7.2.3. Geographical Share
11.7.2.4. Business Segment Share
11.7.2.5. Recent Developments
11.8. testim
11.8.1. Overview
11.8.1.1. Key Management
11.8.1.2. Headquarters
11.8.1.3. Offerings/Business Segments
11.8.2. Key Details (Key details are consolidated data and not product/service specific)
11.8.2.1. Employee Size
11.8.2.2. Past and Current Revenue
11.8.2.3. Geographical Share
11.8.2.4. Business Segment Share
11.8.2.5. Recent Developments
11.9. Perforce Software, Inc.
11.9.1. Overview
11.9.1.1. Key Management
11.9.1.2. Headquarters
11.9.1.3. Offerings/Business Segments
11.9.2. Key Details (Key details are consolidated data and not product/service specific)
11.9.2.1. Employee Size
11.9.2.2. Past and Current Revenue
11.9.2.3. Geographical Share
11.9.2.4. Business Segment Share
11.9.2.5. Recent Developments
11.10. Open Text
11.10.1. Overview
11.10.1.1. Key Management
11.10.1.2. Headquarters
11.10.1.3. Offerings/Business Segments
11.10.2. Key Details (Key details are consolidated data and not product/service specific)
11.10.2.1. Employee Size
11.10.2.2. Past and Current Revenue
11.10.2.3. Geographical Share
11.10.2.4. Business Segment Share
11.10.2.5. Recent Developments
12. Key Takeaways

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings