Applying AI to Drug Discovery and Development: Issues and Challenges

Applying AI to Drug Discovery and Development: Issues and Challenges

Pharma has invested heavily in Artificial Intelligence (AI) enabled technologies in the hope they would drive R&D efficiency gains. From identifying new targets and making screening more efficient to de-risking and accelerating clinical trials, AI tools are commonly applied across drug discovery and development. But is AI delivering value? Which AI tools are being applied successfully? What cultural challenges remain? In this report experts assess the value of AI to pharma’s R&D programmes and the challenges that must be overcome.

Companies

AbbVie, GlaxoSmithKline, Pfizer, Leo Pharma, Bristol Myers Squibb, Google, Amazon, Bayer, Insilico Medicine, Alphabet, Microsoft, McKinsey & Co, Netflix, Flatiron Health, Owkin, Recursion, Meta, DeepMind, Exscientia, Hugging Face, Morgan Stanley, PathAI, Proscia, Tempus, University of Washington


Subject synopsis
Research methodology and objectives
Key insights summary
Issues and insights
What is driving pharma’s investment in AI tools?
Issue summary
Questions
Key insights
Supporting quotes
What are the benefits of applying AI tools to drug discovery and development?
Issue summary
Questions
Key insights
Supporting quotes
Intelligence exhibits
AI’s impact on the organisation
Issue summary
Questions
Key insights
Supporting quotes
Intelligence exhibits
The challenges of applying AI to drug discovery and development
Issue summary
Questions
Key insights
Supporting quotes
Where we are and where we are going
Issue summary
Questions
Key insights
Supporting quotes
Intelligence exhibits
Further reading

Download our eBook: How to Succeed Using Market Research

Learn how to effectively navigate the market research process to help guide your organization on the journey to success.

Download eBook
Cookie Settings